Advertisement

International Journal of Information Technology

, Volume 11, Issue 4, pp 785–794 | Cite as

An optimal design of conservative efficient reversible parity logic circuits using QCA

  • Ali Newaz BaharEmail author
  • Firdous Ahmad
  • Nur Mohammad Nahid
  • Md. Kamrul Hassan
  • Md. Abdullah-Al-Shafi
  • Kawsar Ahmed
Original Research

Abstract

Quantum-dot Cellular Automata (QCA) is a new nano-innovation in digital systems. It is a possible alternative to ordinary CMOS technology. It offers several advantages in reversible logic such as small size and low power dissipation. Therefore, lots of attentions have been paid to implement different reversible QCA circuits. In this way, an improved model of low power odd-parity-bit, generator and checker have been proposed based on the reversible Feynman gate. The proposed reversible odd-parity-bit, generator and checker can be used to check/detect bit loss of information in telecommunication network systems. The proposed parity generator is 57% faster and occupies 38% lesser area than the previous best design. Furthermore, the proposed Nano-communication system dissipates 65% less energy at 0.5 Ek tunneling energy level. A detailed performance evaluation and power analysis are performed in different aspects to authenticate our proposed bit preservation circuits have superb performance in comparison to previously reported works. The results of the proposed circuits have been verified using QCA Designer and the power calculations have been carried out using QCA Pro tool.

Keywords

QCA Parity generator Parity checker Nano-communication circuit QCA Pro 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

References

  1. 1.
    Moore GE (1998) Cramming more components onto integrated circuits. Proc IEEE 86(1):82–85CrossRefGoogle Scholar
  2. 2.
    Lent CS, Tougaw PD (1997) A device architecture for computing with quantum dots. Proc IEEE 85(4):541–557.  https://doi.org/10.1109/5.573740 CrossRefGoogle Scholar
  3. 3.
    Lent CS, Tougaw PD, Porod W, Bernstein GH (1993) Quantum cellular automata. Nanotechnology 4(1):49.  https://doi.org/10.1088/0957-4484/4/1/004 CrossRefGoogle Scholar
  4. 4.
    Lent CS, Tougaw PD (1993) Lines of interacting quantum-dot cells: a binary wire. J Appl Phys 74(10):6227–6233.  https://doi.org/10.1063/1.355196 CrossRefGoogle Scholar
  5. 5.
    Biswas PK, Bahar AN, Habib MA, Bhuiyan MMR (2017) An efficient design of reversible subtractor in quantum-dot cellular automata. Int J Grid Distrib Comput 10(5):13–24.  https://doi.org/10.14257/ijgdc.2017.10.5.02 CrossRefGoogle Scholar
  6. 6.
    Bahar AN, Waheed S, Habib MA (2015) An efficient layout design of fredkin gate in quantum-dot cellular automata (QCA). Düzce Üniversitesi Bilim ve Teknoloji Dergisi 3(1):219–225Google Scholar
  7. 7.
    Hänninen I, Takala J (2008) Binary Adders on Quantum-Dot Cellular Automata. J Signal Process Syst 58(1):87–103.  https://doi.org/10.1007/s11265-008-0284-5 CrossRefGoogle Scholar
  8. 8.
    Bahar AN, Waheed S, Hossain N (2015) A new approach of presenting reversible logic gate in nanoscale. SpringerPlus 4(1):153.  https://doi.org/10.1186/s40064-015-0928-4 CrossRefGoogle Scholar
  9. 9.
    Al-Shafi A, Bahar AN (2016) Novel binary to gray code converters in QCA with power dissipation analysis. Int J Multimed Ubiquitous Eng 11(8):379–396.  https://doi.org/10.14257/ijmue.2016.11.8.38 CrossRefGoogle Scholar
  10. 10.
    Bahar AN, Waheed S (2016) Design and implementation of an efficient single layer five input majority voter gate in quantum-dot cellular automata. SpringerPlus 5(1):636.  https://doi.org/10.1186/s40064-016-2220-7 CrossRefGoogle Scholar
  11. 11.
    Karkaj ET, Heikalabad SR (2017) Binary to gray and gray to binary converter in quantum-dot cellular automata. Opt Int J Light Electron Opt 130:981–989CrossRefGoogle Scholar
  12. 12.
    Silva DS, Sardinha LHB, Vieira MAM, Vieira LFM, Neto OPV (2015) Robust serial nanocommunication with QCA. IEEE Trans Nanotechnol 14(3):464–472.  https://doi.org/10.1109/TNANO.2015.2407696 CrossRefGoogle Scholar
  13. 13.
    Singh G, Sarin RK, Raj B (2016) A novel robust exclusive-OR function implementation in QCA nanotechnology with energy dissipation analysis. J Comput Electron 15(2):455–465.  https://doi.org/10.1007/s10825-016-0804-7 CrossRefGoogle Scholar
  14. 14.
    Das JC, De D (2016) Quantum-dot cellular automata based reversible low power parity generator and parity checker design for nanocommunication. Front Inf Technol Electron Eng 17(3):224–236.  https://doi.org/10.1631/FITEE.1500079 CrossRefGoogle Scholar
  15. 15.
    Landauer R (1961) Irreversibility and heat generation in the computing process. IBM J Res Dev 5(3):183–191.  https://doi.org/10.1147/rd.53.0183 MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Bennett CH (1973) Logical reversibility of computation. IBM J Res Dev 17(6):525–532.  https://doi.org/10.1147/rd.176.0525 MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Cho H, Swartzlander EE (2007) Adder designs and analyses for quantum-dot cellular automata. IEEE Trans Nanotechnol 6(3):374–383.  https://doi.org/10.1109/TNANO.2007.894839 CrossRefGoogle Scholar
  18. 18.
    Walus K, Dysart TJ, Jullien GA, Budiman RA (2004) QCADesigner: a rapid design and Simulation tool for quantum-dot cellular automata. IEEE Trans Nanotechnol 3(1):26–31.  https://doi.org/10.1109/TNANO.2003.820815 CrossRefGoogle Scholar
  19. 19.
    Srivastava S, Asthana A, Bhanja S, Sarkar S (2011) QCA Pro—an error-power estimation tool for QCA circuit design. In In Circuits and Systems (ISCAS), 2011 IEEE International Symposium of Circuits and Systems (ISCAS), pp 2377–2380.  https://doi.org/10.1109/iscas.2011.5938081
  20. 20.
    Biswas P, Gupta N, Patidar N (2014) Basic reversible logic gates and it’s QCA implementation. Int. J Eng Res Appl 4(6):12–16Google Scholar
  21. 21.
    Das JC, De D (2015) Reversible binary to grey and grey to binary code converter using QCA. IETE J Res 61(3):223–229.  https://doi.org/10.1080/03772063.2015.1018845 CrossRefGoogle Scholar
  22. 22.
    Abdullah-Al-Shafi M, Islam MS, Bahar AN (2015) A Review on reversible logic gates and its QCA implementation. Int J Comput Appl 128(2):27–34.  https://doi.org/10.5120/ijca2015906434 CrossRefGoogle Scholar
  23. 23.
    Bahar AN, Waheed S, Habib MA (2014) A novel presentation of reversible logic gate in Quantum-dot cellular automata (QCA). In 2014 International Conference on Electrical Engineering and Information Communication Technology (ICEEICT) (pp. 1–6).  https://doi.org/10.1109/ICEEICT.2014.6919121
  24. 24.
    Srivastava S, Sarkar S, Bhanja S (2009) Estimation of upper bound of power dissipation in QCA circuits. IEEE Trans Nanotechnol 8(1):116–127.  https://doi.org/10.1109/TNANO.2008.2005408 CrossRefGoogle Scholar
  25. 25.
    Bahar AN, Rahman MM, Nahid NM, Hassan MK (2017) Energy dissipation dataset for reversible logic gates in quantum dot-cellular automata. Data in Brief 10:557–560.  https://doi.org/10.1016/j.dib.2016.12.050 CrossRefGoogle Scholar
  26. 26.
    Abdullah-Al-Shafi M, Bahar AN, Ahmad PZ, Ahmad F, Bhuiyan MMR, Ahmed K (2017) Power analysis dataset for QCA based multiplexer circuits. Data in Brief 11:593–596.  https://doi.org/10.1016/j.dib.2017.03.001 CrossRefGoogle Scholar

Copyright information

© Bharati Vidyapeeth's Institute of Computer Applications and Management 2018

Authors and Affiliations

  • Ali Newaz Bahar
    • 1
    Email author
  • Firdous Ahmad
    • 2
  • Nur Mohammad Nahid
    • 1
  • Md. Kamrul Hassan
    • 1
  • Md. Abdullah-Al-Shafi
    • 3
  • Kawsar Ahmed
    • 1
  1. 1.Department of Information and Communication Technology (ICT)Mawlana Bhashani Science and Technology University (MBSTU)TangailBangladesh
  2. 2.Department of Electronic ScienceCluster University, S. P CollegeSrinagarIndia
  3. 3.Institute of Information Technology (IIT), University of DhakaDhakaBangladesh

Personalised recommendations