Aerosol Science and Engineering

, Volume 3, Issue 1, pp 32–47 | Cite as

Intercomparison and Validation of Satellite and Ground-Based Aerosol Optical Depth (AOD) Retrievals over Six AERONET Sites in West Africa

  • K. O. Ogunjobi
  • P. O. AwoleyeEmail author
Original Paper


The geographical and climatic conditions of West Africa make the region an essential area for the description of atmospheric aerosol optical properties across the globe. This study provides an intercomparison of aerosol optical depth (AOD440nm) retrievals from satellite-based CALIPSO, MISR, MODIS and OMI sensors against ground-based sun photometer (AERONET) measurements between 2004 and 2014 from six West African sites, which are Agoufou, Banizoumbou, Ouagadougou, Dakar, Djougou and Ilorin during the period 2004–2014. The analysis revealed that MODISSTD performed better with a high degree of correlation for the six study sites, the CALIPSO and MISR–AERONET comparisons showed strong correlations, and the MODISDB also indicated better correlations, as did the OMI–AERONET comparisons. The root mean square error, mean absolute error and root mean bias error were also computed. The CALIPSO instrument has the lowest RMSE and MAE values over Dakar, while the highest RMSE and MAE values were indicated by the CALIPSO and MODISDB sensors, respectively, over Ilorin. The MISR instrument showed good agreement over Dakar than the other instruments, while CALIPSO AOD retrievals were better than those from the other sensors in Banizoumbou and Ouagadogou. The expected error bounds computed for both MODIS retrievals showed that MODISSTD consistently outperformed MODISDB in all the study sites. High AOD values were averagely observed by the satellite sensors during the local dry months (December–February), due to high concentrations of dust aerosols. High AOD values were observed during March–May, due to the condensation of water vapor on aerosol leading to increase in size and optical depth.





We are grateful to the CALIPSO, MISR, MODIS and OMI science data (Multi-sensor Aerosol Product Sampling System) support team at NASA for the provision of the satellite data used in this study. Our profound gratitude also goes to NASA for providing the platform for AERONET data (


  1. Adesina AJ, Piketh S, Kumar KR, Ventataraman S (2017) Characteristics of columnar aerosol optical and microphysical properties retrieved from the sun photometer and its impact on radiative forcing over Skukuza (South Africa) during 1999–2010Google Scholar
  2. Alam K, Qureshi S, Blaschke T (2011) Monitoring spatio-temporal aerosol patterns over Pakistan based on MODIS, TOMS and MISR satellite data and a HYSPLIT model. Atmos Environ 45:4641–4651CrossRefGoogle Scholar
  3. Alam K, us Sahar N, Iqbal Y (2014) Aerosol characteristics and radioactive forcing during premonsoon and post-monsoon seasons in a n urban environment. Aerosol Air Qual Res 14:99–107CrossRefGoogle Scholar
  4. Alpert P, Shvainshtein O, Kishcha P (2012) AOD trends over megacities based on space monitoring using MODIS and MISR. Am J Clim Change 1:117–131CrossRefGoogle Scholar
  5. Angstrom A (1961) Techniques of determining the turbidity of the atmosphere. Tellus A 13:214–223Google Scholar
  6. Bennouna YS, Cachorro VE, Toledano C, Berjón A, Prats N, Fuertes D, Gonzalez R, Rodrigo R, Torres B, de Frutos AM (2011) Comparison of atmospheric aerosol climatologies over southwestern Spain derived from AERONET and MODIS. Remote Sens Environ 115:1272–1284CrossRefGoogle Scholar
  7. Bibi S, Alam K, Chishtie F, Bibi H (2017) Characterization of absorbing aerosol types using ground and satellites based observations over an urban environment. Atmos Environ 150:126–135CrossRefGoogle Scholar
  8. Bibi H, Alam K, Chishtie F, Bibi S, Shahid I, Blaschke T (2015) Intercomparison of MODIS, MISR, OMI and CALIPSO aerosol optical depth retrievals for four locations on the Indo-Gangetic plains and validation against AERONET data. Atmos Environ 111:113–126CrossRefGoogle Scholar
  9. Boiyo R, Kumar KR, Zhao T, Bao Y (2017) Climatological analysis of aerosol optical properties over East Africa observed from space-borne sensors during 2001–2015. Atmos Environ 152:298–313CrossRefGoogle Scholar
  10. Cheng T, Wang H, Xu Y, Li H, Tian L (2006) Climatology of aerosol optical properties in Northern China. Atmos Environ 40:1495–1509CrossRefGoogle Scholar
  11. Chu D, Kaufman YJ, Ichoku C, Remer LA, Tanré D, Holben BN (2002) Validation of MODIS aerosol optical depth retrieval over land. Geophys Res Lett 29(12):29.8007. CrossRefGoogle Scholar
  12. Curier RL, Veefkind JP, Braak R, Veihelmann B, Torres O, de Leeuw G (2008) Retrieval of aerosol optical properties from OMI radiances using a multiwavelength algorithm: application to western Europe. J Geophys Res Atmos 113:1–16CrossRefGoogle Scholar
  13. Deuzé JL, Bréon FM, Devaux C, Goloub P, Herman M, Lafrance B, Maignan F, Marchand A, Nadal F, Perry G, Tanré D (2001) Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements. J Geophys Res 106:4913–4926CrossRefGoogle Scholar
  14. Dubovik O, King MD (2000) A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements. J Geophys Res 105(D16):20673–20696CrossRefGoogle Scholar
  15. Dubovik O, Smirnov A, Holben BN, King MD, Kaufman YJ, Eck TF, Slutsker I (2000) Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic Network (AERONET) sun and sky radiance measurements. J Geophys Res 105:9791–9806CrossRefGoogle Scholar
  16. Eck TF, Holben BN, Reid JS, Dubovik O, Smirnov A, O’Neill NT, Slutsker I, Kinne S (1999) Wavelength dependence of the optical depth of biomass, urban, and dust aerosols. J Geophys Res 104:31333–31349CrossRefGoogle Scholar
  17. Ferdinand S, I Chineke TC, Nwofor OK, Ewurum BB, Akwujor CE (2015) Analysis on many-year ground based sunphotometer (AERONET) aerosol optical properties and its similarity with satellite observations in IIorin, Cape Verd, Agoufou and Banizoumbou in West Africa. IJSBAR 7:176–196Google Scholar
  18. Frank TD, Di Girolamo L, Geegan S (2007) The spatial and temporal variability of aerosol optical depths in the Mojave Desert of southern California. Remote Sens Environ 107:54–64CrossRefGoogle Scholar
  19. Geng F, Liu Q, Chen Y, Hua Z, Xiaoqin M (2011) Preliminary study of vertical distribution of aerosols during dry haze periods around shanghai based on CALIPSO. Procedia Earth Planet Sci 2:217–222CrossRefGoogle Scholar
  20. Goloub P, Tanré D, Deuzé JL, Herman M, Marchand A, Bréon FM (1999) Validation of the first algorithm applied for deriving the aerosol properties over ocean using the POLDER/ADEOS measurements. IEEE Trans Geosci Remote Sens 37(3):1586–1596CrossRefGoogle Scholar
  21. Gupta P, Khan MN, da Silva A, Patadia F (2013) MODIS aerosol optical depth observations over urban areas in Pakistan: quantity and quality of the data for air quality monitoring. Atmos Pollut Res 4:43–52CrossRefGoogle Scholar
  22. Habib G, Venkataraman C, Chiapello I, Ramachandran S, Boucher O, Shekar Reddy M (2006) Seasonal and interannual variability in absorbing aerosols over India derived from TOMS: relationship to regional meteorology and emissions. Atmos Environ 40:1909–1921CrossRefGoogle Scholar
  23. Hansen J, Sato M, Reedy R, Laces A, Oinks V (2000) Global warming in the twenty-first century: an alternative scenario. Proc Natl Aced Sci USA 97:9875–9880CrossRefGoogle Scholar
  24. He Q, Zhang M, Huang B (2016) Spatio-Temporal variation and impact factors analysis of satellite-based aerosol optical depth over China from 2002–2015. Atmos Environ 129:79–90CrossRefGoogle Scholar
  25. Holben BN, Eck TF, Slutsker I (1998) AERONET—a federated instrument network and data archive for aerosol characterization. Remote Sens Environ 66:1–16CrossRefGoogle Scholar
  26. Holben BN, Tanre D, Smirnov A, Eck TF, Slutsker I, Abuhassan N, Newcomb WW, Schafer J, Chatenet B, Lavenu F, Kaufman YJ, Vande Castle J, Setzer A, Markham B, Clark D, Frouin R, Halthore R, Karnieli A, O’Neill NT, Pietras C, Pinker RT, Voss K, Zibordi G (2001) An emerging ground-based aerosol climatology: aerosol optical depth from AERONET. J Geophys Res 106(D11):12067–12098CrossRefGoogle Scholar
  27. Intergovernmental Panel on Climate Change (IPCC) Impacts, adaptation & vulnerability: contribution of working group II to the third assessment report of the IPCC (2001) In: Houhton JT et al (eds) Climate change 2001: the scientific basis. Cambridge University Press, New YorkGoogle Scholar
  28. Huang J, Ge J, Weng F (2007) Detection of Asia dust storms using multisensory satellite measurements. Remote Sens Environ 110:186–191CrossRefGoogle Scholar
  29. Humera B, Khan A, Farrukh C, Samina B, Imran S, Thomas B (2015) Intercomparison of MODIS, MISR, OMI and CALIPSO aerosol optical depth retrievals for four locations on the Indo-Gangetic plains and validation against AERONET data. Atmos Environ 111:133–126Google Scholar
  30. Hyer E, Reid J, Zhang J (2011) An over-land aerosol optical depth data set for data assimilation by filtering, correction, and aggregation of MODIS Collection 5 optical depth retrievals. Atmos Meas Technol 4:379–408CrossRefGoogle Scholar
  31. Ichoku C, Chu DA, Mattoo S, Kaufman YJ, Remer LA, Tanre D, Slutsker I, Holben BN (2002) A spatio-temporalapproach for global validation and analysis of MODIS aerosol products. Geophys Res Lett 29:MOD1-1–MOD1-4CrossRefGoogle Scholar
  32. Ignatov A, Sapper J, Laszlo I, Nalli N, Kidwell K (2004) Operational aerosol observations (AEROBS) from AVHRR/3 onboard NOAA-KLM satellites. J Atmos Ocean Technol 21:3–26CrossRefGoogle Scholar
  33. Ignatov A, Stowe L (2002) Aerosol retrievals from individual AVHRR channels: I. Retrieval algorithm and transition from Dave to 6S radiative transfer model. J Atmos Sci 59(3):313–334CrossRefGoogle Scholar
  34. Ito T (1993) Size distribution of Antarctic submicron aerosols. Tellus 45B:145–159CrossRefGoogle Scholar
  35. Jiang X, Liu Y, Yu B, Jiang M (2007) Comparison of MISR aerosol optical thickness with AERIONET measurements in Beijing metropolitan area. Remote Sens Environ 107:45–53CrossRefGoogle Scholar
  36. Kahn R, Banerjee P, McDonald D (2001) The sensitivity of multiangle imaging to natural mixtures of aerosols over ocean. J Geophys Res 106:18219–18238CrossRefGoogle Scholar
  37. Kang RA, Kumar KR, Hu K, Yu X, Yin Y (2016) Long-term (2002–2014) evolution and trend in collection 5.1 Level-2 aerosol products derived from the MODIS and MISR sensors over the Chinese Yangtze River Delta. Atmos Res 181:29–43CrossRefGoogle Scholar
  38. Kaskaoutis DG, Singh RP, Gautam R, Sharma M, Kosmopoulos PG, Tripathi S (2012) Variability and Trends of aerosol properties over Kanpur, northern India using AERONET data (2001–2010). Envrion Res Lett 7:024003CrossRefGoogle Scholar
  39. Kaufman YJ, Tanre D, Boucher O (2002) A satellite view of aerosols in the climate system. Nature 419:215–223CrossRefGoogle Scholar
  40. Kaufman YJ, Tanre D, Remer LA, Vermote EF, Chu A, Holben BN (1997) Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer. J Geophys Res 102:17051CrossRefGoogle Scholar
  41. King MD, Kaufman YJ, Tanré D, Nakajima T (1999) Remote sensing of tropospheric aerosols from space: past, present, and future. Bull Am Meteorol Soc 80:2229–2259CrossRefGoogle Scholar
  42. Kittaka C, Winker DM, Vaughan MA, Omar A, Remer LA (2011) Intercomparison of column aerosol optical depths from CALIPSO and MODIS-Aqua. Atmos Meas Tech 4:131–141. CrossRefGoogle Scholar
  43. Levelt PF, Hilsenrath E, Leppelmeier GW, van den Oord GHJ, Bhartia PK, Tamminen J, de Haan JF, Veefkind JP (2006) Science objectives of the ozone monitoring instrument. IEEE Trans Geosci Remote Sens 44(5):1199–1208CrossRefGoogle Scholar
  44. Levin Z, Ganor E, Gladstein V (1996) The effects of desert particles coated with sulfate on rain formation in the eastern Mediterranean. J Appl Meteorol 35:1511–1523CrossRefGoogle Scholar
  45. Levy RC, Remer LA, Kleidman RG, Mattoo S, Ichoku C, Kahn R, Eck TF (2010) Global evaluation of the collection 5 MODIS dark-target aerosol products over land. Atmos Chem Phys Discuss 10:14815–14873CrossRefGoogle Scholar
  46. Levy RC, Remer LA, Mattoo S, Vermote EF, Kaufman YJ (2007) Second generation operational algorithm: retrieval of aerosol optical properties over land from inversion of moderate resolution imaging spectroradiometer spectral reflectance. J Geophys Res Atmos 112:1–21CrossRefGoogle Scholar
  47. Li J, Carlson BE, Lacis AA (2014a) Application of spectral analysis techniques in the intercomparison of aerosol data. Part II: using maximum covariance analysis to effectively compare spatiotemporal variability of satellite and AERONET measure aerosol optical depth. J. Geophys Res Atmos 119:153–166CrossRefGoogle Scholar
  48. Li J, Carlson BE, Lacis AA (2014b) Application of spectral analysis techniques in the intercomparison of aerosol data. Part III: using combined PCA to compare spatiotemporal variability of MODIS, MISR and OMI aerosol optical depth. J. Geophys Res Atmos 119:4017–4042CrossRefGoogle Scholar
  49. Liu J, Zheng Y, Li Z, Wu R (2008) Ground-based remote sensing of aerosol optical properties in one city in Northwest China. Atmos Res 89:194–205CrossRefGoogle Scholar
  50. Ma X, Yu F (2014) Seasonal variability of aerosol vertical profiles over east US and west Europe: GEOS-Chem/APM simulation and comparison with CALIPSO observations. Atmos Res 140:28–37CrossRefGoogle Scholar
  51. Ma X, Yu F, Luo G (2012) Aerosol direct radiative forcing based on GEOS-Chem-APM and uncertainties. Atmos Chem Phys 12:5563–5581. CrossRefGoogle Scholar
  52. Marey H, Gille J, El-Askary H, Shalaby E, El-Raey M (2011) Aerosol climatology over Nile Delta based on MODIS, MISR and OMI satellite data. Atmos Chem Phys 11:10637–10648CrossRefGoogle Scholar
  53. Martonchik JV, Diner DJ, Kahn RA, Ackerman TP, Verstraete MM, Pinty B, Gordon HR (1998) Techniques for the retrieval of aerosol properties over land and ocean using multiangle imaging. Geosci Remote Sens IEEE Trans 36:1212–1227CrossRefGoogle Scholar
  54. Myhre G, Stordal F, Johnsrud M, Diner D, Geogdzhayev I, Haywood J, Holben B, Holzer-Popp T, Ignatov A, Kahn R (2005) Intercomparison of satellite derived aerosol optical depth over the ocean during the period September 1997 to December 2000. Atmos Chem Phys 5:1697–1719CrossRefGoogle Scholar
  55. Nicholson SE (2013) The west African Sahel: a review of recent studies on the rainfall regime and its interannual variability. ISRN Meteorol 2013:453521CrossRefGoogle Scholar
  56. Oluleye A, Ogunjobi KO, Bernard A, Ajayi VO, Akinsanola AA (2012) Multiyear analysis of ground-based sun photometer (AERONET) aerosol optical properties and its comparison with satellite observations over West Africa. Glob J Human Soc Sci Geogr Environ Geosci 12-10-1.0, 2249-460xGoogle Scholar
  57. Omar AH, Winker DM, Won JG (2004) Aerosol models for the CALIPSO lidar inversion algorithms. In: Werner C (ed) SPIE. Deutsches Zentrum fuer Luft-und Raumfahrt e.V. (Germany), Barcelona, Spain, pp 104–115Google Scholar
  58. Omar AH, Won J, Winker DM, Yoon S, Dubovik O, McCormick MP (2005) Development of global aerosol models using cluster analysis of Aerosol Robotic Network (AERONET) measurements. J Geophys Res. Google Scholar
  59. Prasad AK, Singh RP (2007) Comparison of MISR-MODIS aerosol optical depth over the indo-gangetic basin during the winter and summer seasons (2000–2005). Remote Sens Environ 107:109–119CrossRefGoogle Scholar
  60. Prospero JM, Ginoux P, Torres S, Nicholson E, Gill TE (2002) Environmental characterization of global sources of atmospheric soil dust identified with the NIMBUS 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Rev Geophys 40(1):1002. CrossRefGoogle Scholar
  61. Qi Y, Ge J, Huang J (2013) Spatial and temporal distribution of MODIS and MISR aerosol optical depth over northern China and comparison with AERONET. Chin Sci Bull 58:2497–2506CrossRefGoogle Scholar
  62. Redemann J, Vaughan M, Zhang Q, Shinozuka Y, Russell P, Livingston J, Kacenelenbogen M, Remer L (2012) The comparison of MODIS-Aqua (C5) and CALIOP (V2 & V3) aerosol optical depth. Atmos Chem Phys 12:3025–3043. CrossRefGoogle Scholar
  63. Remer LA, Kaufman YJ, Tanre D, Mattoo S, Chu DA, Martins JV, Li RR, Ichoku C, Levy RC, Kleidman RG, Eck TF, Vermote E, Holben BN (2005) The MODIS aerosol algorithm, products and validation. J Atmos Sci 62(4):947–973CrossRefGoogle Scholar
  64. Remer LA, Kleidman RG, Levy RC, Kaufman YJ, Tanre D, Mattoo S, Martins JV, Ichoku C, Koren I, Hongbin Y, Holben BN (2008) Global aerosol climatology form the MODIS satellite sensors. J Geophys Res 113113:D14S07Google Scholar
  65. Richard BK, Kumar Raghavendra, Zhao Tianliang (2017) Statistical intercomparison and validation of multisensory aerosol optical depth retrievals over three AERONET sites in Kenya, East Africa. Atmos Res 197(207):277–288Google Scholar
  66. Sanchez-Romero A, Gonzalez JA, Calbo J, Sanchez-Lorenzo A, Michalsky J (2016) Aerosol optical depth in a western Mediterranean site: an assessment of different methods. Atmos Res 174–175:70–84CrossRefGoogle Scholar
  67. Singh R, Dey S, Tripathi S, Tare V, Holben B (2004) Variability of aerosol parameters over Kanpur, northern India. J Geophys Res Atmos 1984–2012:109Google Scholar
  68. Solomon S (2007) Climate change 2007–the physical science basis: working group 1 contribution to the fourth assessment report of the IPCC. Cambridge University PressGoogle Scholar
  69. Tadros M, El-Metwally M, Hamed A (2002) Determination of Angstrom coefficients from spectral aerosol optical depth at two sites in Egypt. Renew Energy 27:621–645CrossRefGoogle Scholar
  70. Tanre D, Kaufman YJ, Holben BN, Chatenet B, Karnieli A, Lavenu F, Blarel L, Dubovik O, Remer L, Sminov A (2001) Climatology of dust aerosol size distribution and optical properties derived from remotely sensed data in the solar spectrum. J Geophys Res 106:18205–18217CrossRefGoogle Scholar
  71. Tegen I, Heinold B, Todd M, Helmert J, Washington R, Dubovik O (2006) Modeling soil dust aerosol in the Bode´le depression during the BoDEx campaign. Atmos Chem Phys 6:4345–4359CrossRefGoogle Scholar
  72. Torres O, Bhartia PK, Herman JR, Ahmad Z, Gleason J (1998) Derivation of aerosol properties from satellite measurements of backscattered ultraviolet radiation: theoretical basis. J Geophys Res Atmos 103:17099–17110CrossRefGoogle Scholar
  73. Tripathi S, Dey S, Chandel A, Srivastava S, Singh RP, Holben B (2005) Comparison of MODIS and AERONET derived aerosol optical depth over the Ganga Basin, India. Ann Geophys 23:1011–1093CrossRefGoogle Scholar
  74. Winker DM, Hunt WH, McGill MJ (2007) Initial performance assessment of CALIOP. Geophys Res Lett 34:L19803CrossRefGoogle Scholar
  75. Wong MS, Nichol Janet E, Lee Kwon Ho (2012) Estimation of aerosol sources and aerosol transport pathways using AERONET clustering and backward trajectories: a case study of Hong Kong. Int J Remote Sens 34:938–955CrossRefGoogle Scholar
  76. Wong MS, Shahzad MI, Nichol JE, Lee KH, Chan P (2013) Validation of MODIS, MISR, OMI, and CALIPSO aerosol optical thickness using ground-based sun-photometers in Hong Kong. Int J Remote Sens 34:897–918CrossRefGoogle Scholar
  77. Wurzler S, Reisin TG, Levin Z (2000) Modification of mineral dust particles by clouds processing and subsequent effects on drop size distributions. J Geophys Res 105:4501–4512CrossRefGoogle Scholar
  78. Xiao N, Shi T, Calder CA, Munroe DK, Berrett C, Wolfinbarger S, Li D (2009) Spatial characteristics of the difference between MISR and MODIS aerosol optical depth retrievals over mainland Southeast Asia. Remote Sens Environ 113:1–9CrossRefGoogle Scholar
  79. Yoshioka M, Mahowald J, Dufresne L, Luo C (2005) Simulation of absorbing aerosol indices for African dust. J Geophys Res 110:D18S17. CrossRefGoogle Scholar
  80. Zhao T, Stowe LL, Smirnov A, Crosby D, Sapper J, McClain CR (2002) Development of a global validation package for satellite oceanic aerosol optical thickness retrieval based on AERONET observations and its application to NOAA/NESDIS operational aerosol retrievals. J Atmos Sci 59(3):294–312CrossRefGoogle Scholar

Copyright information

© Institute of Earth Environment, Chinese Academy Sciences 2019

Authors and Affiliations

  1. 1.West Africa Science Service Centre on Climate and Adapted Land-Use (DRP-WACS)Federal University of TechnologyAkureNigeria
  2. 2.Department of Meteorology and Climate ScienceFederal University of TechnologyAkureNigeria

Personalised recommendations