Aerosol Science and Engineering

, Volume 3, Issue 1, pp 1–20 | Cite as

Atmospheric Aerosols: Some Highlights and Highlighters, 1950 to 2018

  • G. M. HidyEmail author


The science of atmospheric aerosols began more than a century ago; it has experienced major advancements after the mid-twentieth century with motivation from diverse public interests and concerns for environmental protection. At least six generations of mentored investigators have involvement in these advancements. Since the 1950s, important knowledge has emerged in the theory of the dynamics of suspended particles and advanced measurements. Important developments in the theory of atmospheric aerosols include: (a) nucleation and growth mechanisms, (b) formalization of particle dynamics in the Knudsen regimes, (c) characterization of the mechanisms for the particle-size distribution, (d) identification of chemical processes for atmospheric particle sources, and (e) model integration of particle physical and chemical processes with meteorological processes. Important advances in measurements have included: (a) semicontinuous determination of particle-size distributions, (b) new methods for sampling and analysis of mass concentration and composition, (c) methods for continuous characterization of aerosol chemical properties, and (d) development of direct sensing techniques using optical properties. Examples of breakthroughs in these areas are given in the text. Illustrations of achievements in each of the areas are included in the paper. The survey is completed with comments on the generational nature of investigator contributions to aerosol science.


Aerosol history Aerosol physics Aerosol chemistry Atmospheric aerosols 



To Sheldon Friedlander for my involvement in aerosol science. To Judith Chow and John Watson for reviewing a preliminary version of this manuscript.

Compliance with ethical standards

Conflict of Interest

No conflict of interest for the author of this manuscript.

Supplementary material

41810_2019_39_MOESM1_ESM.docx (16 kb)
Supplementary file1 (DOCX 17 kb)


  1. Aitken J (1887/1888) On the number of particles in the atmosphere. Trans Roy Soc Edinb 35:1-19 (Collected Scientific Papers No. 16)CrossRefGoogle Scholar
  2. Andreae M, Gelencsier A (2006) Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols. Atmos Chem Phys 6:3131–3148CrossRefGoogle Scholar
  3. Appel B, Wesolowski J (1980) Selection of filter media for particulate sampling with a Lundgren Impactor. In: Hidy G, Mueller P, Grosjean D, Appel B, Wesolowski J (eds) The characterization and origins of smog aerosols. Wiley, New York, pp 107–124Google Scholar
  4. Arnott WP, Hamasha K, Moosmuller H, Sheridan P, Ogren J (2005) Towards aerosol light-absorption measurements with a 7-wavelength aethelometer: evaluation with a photoacoustic instrument and a 3-wavelength nephelomenter. Aerosol Sci Technol 39:17–29CrossRefGoogle Scholar
  5. Becker R, Doring W (1935) Kinetische behandlung der keimildung in ubersattingten dampfen. Ann Phys (Leipzig) 24:719–752CrossRefGoogle Scholar
  6. Bey I, Jacob D, Yantosca R, Logan J, Field B, Fiore A, Li Q, Liu H, Mickley L, Schultz M (2001) Global modeling of tropospheric chemistry with assimilated meteorology: model description and evaluation. J Geophys Res 106:23073–23096CrossRefGoogle Scholar
  7. Bhumralkar C, Endlich R, Nitz K, Brodzinsky R, Mayerhoofer P (1984) Lagrangian long-range air pollution model for eastern North America. In: Wispelaere C (ed) Air pollution modeling and its application III. Plenum Publishing, New York, pp 35–56CrossRefGoogle Scholar
  8. Blanchard C, Tanenbaum S, Hidy G (2012) Source contributions to atmospheric gases and particulate matter in the southeastern United States. Environ Sci Technol 46:5479–5488CrossRefGoogle Scholar
  9. Blifford I Jr, Ringer L (1969) The size distribution of aerosols in the continental troposphere. J Atmos Sci 26:716–733CrossRefGoogle Scholar
  10. Blumenthal D (2011) Measurements of the three-dimensional distribution and transport of aerosols. In: Ensor D (ed) Aerosol science and technology: history and reviews. RTI Press, Research Triangle Park, pp 296–314sGoogle Scholar
  11. Blumenthal D, Tommerdahl J, McDonald J, Strong R (1981) Aircraft Data Summaries for the SURE Intensivesm vol. 1, EA-1910 Electric Power Research Institute, Palo AltoGoogle Scholar
  12. Bond T, Doherty S, Fahey D, Foster P, Berntsen T et al (2013) Bounding the role of black carbon in the climate system: A scientific assessment. J Geophys Res Atmospheres 118:5380–5552. CrossRefGoogle Scholar
  13. Brimblecombe P (1987) The Big Smoke. Methuen, LondonGoogle Scholar
  14. Byrd R, Stewart W, Lightfoot E (1960) Transport Phenomena. J. Wiley and Sons, New YorkGoogle Scholar
  15. Byun DW, Ching J (eds) (1999) Science algorithms of the EPA Models-3 Community Multiscale Air Quality (CMAQ) Modeling System. EPA-600/R-99/03. US Environmental Protection Agency, Research Triangle ParkGoogle Scholar
  16. Cadle R (1973) Particulate Matter in the Lower Atmosphere. In: Rasool S (ed) Chemistry of the Lower Atmosphere. Plenum Press, New York, Chap, p 2Google Scholar
  17. Calvert J, Lazrus A, Kok G, Heikes B, Whan J, Lind J, Cantrell C (1985) Chemical Mechanisms of Acid Generation in the Troposphere. Nature 317:27–35CrossRefGoogle Scholar
  18. Canagaratna M et al (2007) Chemical and Microphysical Characterization of Ambient Aerosols with the Aerodyne Aerosol Mass Spectrometer. Mass Spectrom Rev 26:185–222CrossRefGoogle Scholar
  19. Carlton A et al (2018) Synthesis of the Southeast Atmospheric Studies: Investigating Fundamental Atmospheric Chemistry Questions. Bull Amer Meteorol Soc 99:547–568CrossRefGoogle Scholar
  20. Carson J, Mulholland G, Zachariah M (2017) Friction Factor for Aerosol Fractal Aggregates over the entire Knudson Range. Phys Rev 95:013103Google Scholar
  21. Casuccio GS, Janocko PB, Lee RJ, Kelly JF, Dattner SL, Mgebroff JS (1983) The use of computer controlled scanning electron microscopy in environmental studies J Air Pollut Control Assoc 33:937–943CrossRefGoogle Scholar
  22. Van Cauwenberghe K (1986) Sampling Size Distributions Reactivity and Analysis of Organic Aerosol Constituents. In: Lee S, Schneider T, Grant L, Verkerk P (eds) Aerosols: Research, Risk Assessment and Control Strategies. Lewis Publishers, Chelsea, MI, pp 151–171Google Scholar
  23. Chandrasekhar S (1960) Radiative Transfer. Dover, New YorkGoogle Scholar
  24. Chang J, Binkowski F, Seamen N, et al (1990) The regional acid deposition model and engineering model: SOS/T report 4. In: Irving P (ed) Acidic deposition state of science and technology, vol. 1, National Acid precipitation assessment program, WashingtonGoogle Scholar
  25. Chapman S, Cowling T (1960) The mathematical theory of non-uniform gases. Cambridge Univ. Press, CambridgeGoogle Scholar
  26. Charlson R, Langner J, Rodhe H, Leovy C, Warren S (1991) Perturbation of the northern hemisphere radiation balance by backscattering from anthropogenic sulfate aerosols. Tellus 43B:152–163Google Scholar
  27. Charlson R, Schwartz S, Hales J, Cess R, Coakley J, Hansen J, Hofmann D (1992) Climate Forcing by Anthropogenic Aerosols. Science 255:423–430CrossRefGoogle Scholar
  28. Chow JC (1995) Critical Review: Measurement Methods to Determine Compliance with Ambient Air Quality Standards for Suspended Particles. J Air Waste Manage Assoc 45:320–382CrossRefGoogle Scholar
  29. Chow JC, Watson JG, Pritchett L, Pierson W, Frazier C, Purcell R (1993) The DRI Thermal optic reflectance carbon analysis system: Description, evaluation, and applications in US air quality studies. Atmos Environ 27A:1185–1201CrossRefGoogle Scholar
  30. Chow JC et al (2018) Separation of brown carbon and equivalence of a multiwavelength thermal optical carbon analyzer. Aerosol Air Qual Res 15:1145–1159CrossRefGoogle Scholar
  31. Chow JC, Watson JG (1998) Guidelines on speciated particulate monitoring. Environmental Protection Agency, Research Triangle Park. www3. Scholar
  32. Clarke AD, Kapustin V (2002) A Pacific Aerosol Survey. Part 1: a decade of data on particle production, transport, evolution and mixing in the troposphere. J Atmos Sci 59:363–382CrossRefGoogle Scholar
  33. Collins D, Jonsson H, Liao H, Flagan R, Seinfeld J, Noone K, Hering S (2000) Airborne analysis of the Los Angeles Aerosol. Atmos Environ 34:4155–4173CrossRefGoogle Scholar
  34. Covert D, Waggoner A, Weiss R, Ahlquist N, Charlson R (1980) Atmospheric Aerosols, Humidity and Visibility. In: Hidy G, Mueller P, Grosjean D, Appel B, Wesolowski J (eds) (1980) The characterization and origins of smog aerosols. Wiley, New York, pp 559–584Google Scholar
  35. Crutzen P (1976) The possible importance of OCS for the sulfate layer of the stratosphere. Geophys Res Lett 3:73–76CrossRefGoogle Scholar
  36. Cruz CN, Pandis SN (2002) Deliquescence and Hygroscopic Growth of Mixed Inorganic-Organic Atmospheric Aerosol. Environ Sci Technol 34:4313–4319CrossRefGoogle Scholar
  37. Delene D, Ogren J (2002) Variability of Aerosol Optical Properties at Four North American Surface Monitoring Sites. J Atmos Sci 59:1135–1150CrossRefGoogle Scholar
  38. DeshlerT Hervig M, Hofmann D, Rosen J, Liley J (2003) Thirty years of in situ stratospheric size distribution measurements from Laramie, Wyoming (41oN), using balloon-borne instruments. J Geophys Res. CrossRefGoogle Scholar
  39. Drewnick F, Schwab J, Hogrefe O, Peters S, Husain L, Diamond D, Weber R, Demejian K (2003) Intercomprison and evaluation of four semi-continuous PM2.5 sulfate instruments. Atmos Environ 37:3335–3350CrossRefGoogle Scholar
  40. Einstein A (1905) Investigations on the Theory of Brownian Motion. Dover, New YorkGoogle Scholar
  41. Eliassen A (1978) The OECD study of long range transport of pollutants: Long-range transport modeling. Atmos Environ 12:479–487CrossRefGoogle Scholar
  42. El-Zanan H, Zielinska B, Mazzoleni L, Hansen DA (2009) Analytical Determination of the Aerosol Organic Mass-to-Organic Ratio. J Air Waste Manage Assoc 59:58–60CrossRefGoogle Scholar
  43. Enghoff M, Svensmark H (2008) The role of atmospheric ions in aerosol nucleation-a review. Atmos Chem Phys 8:4911–4923CrossRefGoogle Scholar
  44. Environmental Research and Technology (1985) ADOM/TADAP model development program 8. ERT AECOM, CamarilloGoogle Scholar
  45. Fehsenfeld F, Hastie D, Chow JC, Solomon P (2004) Particle and Gas Measurements. In: McMurry P, Shepherd M, Vickery J (eds) Particulate matter science for policy makers. Cambridge Univ. Press, Cambridge, pp 159–189Google Scholar
  46. Frenkel J (1955) Kinetic theory of liquids. Dover, New York, pp 366–413Google Scholar
  47. Friedlander SK (1960) Similarity considerations for the particle size spectrum of a coagulating, sedimenting aerosol. J Meteorol 17:479–483CrossRefGoogle Scholar
  48. Friedlander SK (1973) Chemical element balances and identification of air pollution sources. Environ Sci Technol 7:235–240CrossRefGoogle Scholar
  49. Friedlander SK (1990) Smoke dust and haze. Oxford Univ. Press, OxfordGoogle Scholar
  50. Friend J (1973) The Global Sulfur Cycle. In: Rasool S (ed) Chemistry of the lower atmosphere. Plenum Press, New York, Chap, p 4Google Scholar
  51. Frohlich-Nowoisky J, Kampf C, Weber B, Huffman JA, Pohlker C et al (2016) Bioaerosols in the earth system: climate, health and ecosystem interactions. Atmos Res 182:346–376CrossRefGoogle Scholar
  52. Fuchs NA (1964) The mechanics of aerosols. Pergamon, New YorkGoogle Scholar
  53. Green H, Lane W (1957) Particulate clouds: dusts, smokes and mists. Spon, LondonGoogle Scholar
  54. Grosjean D, Seinfeld J (1989) Parameterization of the formation potential of secondary organic aerosols. Atmos Environ 23:1733–1747CrossRefGoogle Scholar
  55. Hallquist M, Wenger JC, Baltensperger U, Rudich Y, Simpson D et al (2009) The formation, properties and impact of secondary organic aerosol: current and emerging issues. Atmos Chem Phys 9:5155–5236CrossRefGoogle Scholar
  56. Hanel G (1976) The properties of atmospheric aerosol particles as functions of relative humidity at thermodynamic equilibrium with surrounding moist air. In: Landsberg HE, Mieghem J (eds) Advances in geophysics 19. Academic Press, New York, pp 73–188Google Scholar
  57. Hanley L, Zimmeman R (2009) Light and molecular ions: The emergence of vacuum uv single-photon ionization in MS. Anal Chem 81:4174-4182CrossRefGoogle Scholar
  58. Hansen J, Lacis A, Lee P, Wang W (1980) Climatic effects of atmospheric aerosols. Ann NY Acad Sci 338:575–587CrossRefGoogle Scholar
  59. Hansen AD, Rosen H, Novakov T (1982) Real-time measurement of the absorption coefficient of aerosol particles. Appl Opt 21(17):3060–3062CrossRefGoogle Scholar
  60. Hansen DA, Edgerton ES, Hartsell BE, Jansen JJ, Hidy GM, Kandasamy K, Blanchard C (2003) The southeastern aerosol research and characterization study (SEARCH): 1 overview. J Air Waste Manag Assoc 53:1460–1471CrossRefGoogle Scholar
  61. Henry RC (1987) Psychophysics visibility and perceived transparency. Atmos Environ 21:159–164CrossRefGoogle Scholar
  62. Henry RC (2002) Field studies of color perception in the natural environment. J Vision 2(65):65ACrossRefGoogle Scholar
  63. Henry RC (2003) Multivariate receptor modeling by N-dimensional edge detection. Chemom Intell Lab Syst 65:179–189. CrossRefGoogle Scholar
  64. Hering S, (2005) Automated measurement of chemical constituents of airborne particles in the, (1970) In: Sem G, Brimblecomb P, Ensor D, Gentry J, Marijnissen M, Preining O (eds) History and review of aerosol science. Reston, American Association for Aerosol Research, pp 201–210Google Scholar
  65. Hermann M, Brenninkmeijer C, Slemr F, Heintzenberg J, Martinsson B, Schlager H, van Velthoven P, Wiedensohle A, Ziereis H (2007) Submicrometer aerosol particle distributions in the upper troposphere over the mid-latitude North Atlantic-results from the third route of “CARIBIC”. Tellus. CrossRefGoogle Scholar
  66. Hidy GM (1984) Aerosols: an industrial and environmental science. Academic Press, New YorkGoogle Scholar
  67. Hidy GM (1994) Atmospheric sulfur and nitrogen oxides: eastern north American source-receptor relationships. Academic Press, San DiegoGoogle Scholar
  68. Hidy GM, Brock J (1970) The dynamics of aerocolloidal systems. Pergamon, New YorkGoogle Scholar
  69. Hidy GM, Mueller P, Grosjean D, Appel B, Wesolowski J (eds) (1980) The characterization and origins of smog aerosols. Wiley, New York, p 38Google Scholar
  70. Hidy GM, Mohnen V, Blanchard C (2013) Tropospheric aerosols: size-differentiated chemistry and large-scale spatial distributions. J Air Waste Manage Assoc 63:377–404CrossRefGoogle Scholar
  71. Hidy GM, Mueller PK, Altshuler SL, Chow JC, Watson JG (2017) Critical review: air quality measurements—from rubber bands to tapping the rainbow. J Air Waste Manage Assoc 67:637–668CrossRefGoogle Scholar
  72. Ho W, Hidy G, Govan R (1974) Measurements of Aerosol Dielectric Constant and Particulate Liquid Water Content. J Appl Meteorol 13:871–878CrossRefGoogle Scholar
  73. Hobbs P (1993) Aerosol-cloud Interactions. In: Hobbs P (ed) Aerosol cloud interactions. Academic Press, San Diego, pp 33–73CrossRefGoogle Scholar
  74. Hoff R, Christopher S (2009) Remote sensing of particulate pollution from space: have we reached the promised land? A critical review. J Air Waste Manage Assoc 59:645–675CrossRefGoogle Scholar
  75. Hogan A, Mohnen V (1979) On the global distribution of aerosols. Science 205:1373–1375CrossRefGoogle Scholar
  76. Hopke PK (1985) Receptor modeling in environmental chemistry. Wiley, New YorkGoogle Scholar
  77. Huntzicker J, Johnson R, Shah J, Cary R (1982) Analysis of organic and elemental carbon by a thermal-optical method. In: Wolff G, Klimisch R (eds) Particulate carbon atmospheric life cycle. Plenum Press, New York, pp 79–88CrossRefGoogle Scholar
  78. Husar R, (2000) Atmospheric Aerosol Science before, (1900) In: Preining O (ed) history of aerosol science. Verlag der Osterreichschen Akademie der Wissenschaften, Vienna, pp 25–36Google Scholar
  79. Israel H, Schulz L (1932) Uber die Grossenvertailungder atmospharischen ionen. Meteorol Z 49:226–233Google Scholar
  80. Jacobson M, Hansson H-C, Noone K, Charlson R (2000) Organic atmospheric aerosols. Rev Geophys 38:267–294CrossRefGoogle Scholar
  81. Jaenicke R (1986) Physical Characterization of Aerosols. In: Lee S, Schneider T, Grant L, Verkerk P (eds) Aerosols: research, risk assessment and control strategies. Lewis Publishers, Chelsea, pp 97–120Google Scholar
  82. Jimenez JL, Jayne JT, Shi Q, Kolb CE, Worsnop DR, Yourshaw I, Seinfeld JH, Flagan RC, Zhang X, Smith KA, Morris JW, Davidovits P (2003) Ambient aerosol sampling with an Aerosol Mass Spectrometer. J Geophys Res. CrossRefGoogle Scholar
  83. Jimenez J, Canagarata N, Donahue N, Prevot A, Zhang Q et al (2009) Evolution of organic aerosols in the atmosphere. Science 326:1525–1529. CrossRefGoogle Scholar
  84. Junge C (1952) Die konstitution des atmospharischen aerosols. Ann Meteorol 1952:1–55Google Scholar
  85. Junge C (1955) The size distribution and aging of natural aerosols as determined from electrical and optical data on the atmosphere. J Meteorol 12:13–25CrossRefGoogle Scholar
  86. Junge C (1963) Air chemistry and radioactivity, chap. 2. Academic Press, New YorkGoogle Scholar
  87. Junge C, Chagnon C, Manson J (1961) Stratospheric Aerosols. J Meteorol 18:81–108CrossRefGoogle Scholar
  88. Kalani A, Christofides P (2002) Simulation, estimation and control of size distribution in aerosol processes with simultaneous reaction, nucleation, condensation and coagulation. Comput Chem Eng 26:1153–1169CrossRefGoogle Scholar
  89. Kerker M (1969) The scattering of light and other electromagnetic radiation. Academic Press, New YorkGoogle Scholar
  90. King M, Kaufman Y, Tanre D, Nakajima T (1999) Remote sensing of tropospheric aerosols from space: past, present and future. Bull Amer Meteorol Soc 80:2229–2259CrossRefGoogle Scholar
  91. Kleinman MT et al (2017) Air quality measurements: From rubber bands to tapping the rainbow: Critical review discussion. J Air Waste Manage Assoc 67:1159–1168CrossRefGoogle Scholar
  92. Kohler H (1936) The nucleus in and the growth of hygroscopic droplets. Trans Faraday Soc 32:1152–1161CrossRefGoogle Scholar
  93. Koutzeugogi K, Sabelfeld Levykin A, K, (1996) Kinetics of aerosol formation in the free molecule regime in the presence of condensable vapors. J Aerosol Sci 27:665–679CrossRefGoogle Scholar
  94. Kreid D (1976) Atmospheric visibility measured by a modulated cw lidar. Appl Opt 15:1823–1831CrossRefGoogle Scholar
  95. Kreidenweis S, Koehler K, DeMott P, Prenni A, Carrico C, Ervens B (2005) Water activity and activation diameters from hygroscopicity data—part i: theory and application to inorganic salts. Atmos Chem Phys 5:1357–1370CrossRefGoogle Scholar
  96. Kroll J, Nga L, Murphy S, Flagan R, Seinfeld J (2005G) Secondary organic aerosol formation from isoprene photoxidation under high HOx conditions. Geophys Res Lett. CrossRefGoogle Scholar
  97. Kulmala M, Dal Maso M, Makela J, Pirjola L, Vakeva M, Aalto P, Mikkulainen P, Hameri K, O’Dowd C (2003) On the formation, growth and composition of nucleation mode particles. Tellus.,2001.530411.xGoogle Scholar
  98. Lamb H (1932) Hydrodynamics. Dover Publications, New York, p 598Google Scholar
  99. Landsberg H (1934) Observations of condensation nuclei in the atmosphere. Month Weather Rev 62:442–445CrossRefGoogle Scholar
  100. Leighton P (1961) Photochemistry of air pollution. Academic Press, New YorkGoogle Scholar
  101. Lelieveld J, Crutzen P, Ramanathan V, Andreae M, Brenninkmeijer C et al (2001) The Indian ocean experiment: widespread air pollution from south and southeast Asia. Science 291:1031–1036CrossRefGoogle Scholar
  102. Lewis C (1981) The tapered element oscillating microbalance: a monitor for short term measurement of fine particle mass concentration: EPA 800/S2-81-146. Environmental Systems Laboratory Environmental Protection Agency, Research Triangle ParkGoogle Scholar
  103. Lippman M, Altshuler B (1975) Regional deposition of aerosols. In: Aharonson E, Ben David E, Klingberg M (eds) Air pollution and the lung. Wiley; Israel Universities Press, Jerusalem, pp 25–48Google Scholar
  104. Liu Y, Zhang K, Yang S (2018) Study on the interaction between modes of a nanoparticle–laden aerosol. J Nanotechnol. CrossRefGoogle Scholar
  105. Lodge JP Jr (1988) Methods of Air Sampling and Analysis, 3rd edn. Lewis Publishers, Ann ArborGoogle Scholar
  106. Lord Rayleigh (1871) On the scattering of light by small particles. Phil Mag 41:447CrossRefGoogle Scholar
  107. Lorenz L (1890) Lysbevaegelsen i og uden for en af plane Lysbolger belyst Kugle. Det Kongelige Danske Videnskabernes Selskabs Skrifter. 6. Raekke 6. Bind 1:1–62Google Scholar
  108. Lushnikov A, Kulmala M, Arstilla H, Zapodinsky R (1996) Source enhanced condensation of a single component vapor in the transition regime. J Aerosol Sci 27:853–867CrossRefGoogle Scholar
  109. MacArthur L, Halliwell D, Niebergall O, O’Neill N, Slusser J, Wehrli C (2003) Field comparison of network sun photometers. J Geophys Res 108(D19):4596. CrossRefGoogle Scholar
  110. Mader P, MacPhee R, Lafberg R, Larson C (1952) Composition of the organic part of atmospheric aerosols in Los Angeles. Ind Eng Chem 44:1352–1355CrossRefGoogle Scholar
  111. Malm W, Sisler J, Huffman D, Eldred R, Cahill T (1994) Spatial and seasonal trends in particle concentration and optical extinction in the US. J Geophys Res 99:1347–1370CrossRefGoogle Scholar
  112. Marple V, Olson B (2011) History of Virtual Impactors. In: Ensor D (ed) Aerosol science and technology: history and reviews. RTI Press, Research Triangle Park, pp 509–528Google Scholar
  113. Martin L (1984) Kinetic studies of sulfite oxidation in aqueous solutions. In: Calvert J (ed) Acid precipitation: SO2, NO, NO2 oxidation mechanisms: atmospheric conditions. Ann Arbor Scientific Publications, Ann Arbor, pp 63–100Google Scholar
  114. Mason BJ (1957) The Physics of Clouds. Clarendon Press, LondonGoogle Scholar
  115. McElroy M, Salawitch R, Wofsy S, Logan J (1986) Reductions of antarctic Ozone due to Synergistic interactions of chlorine and bromine. Nature 21:759–762CrossRefGoogle Scholar
  116. McKeen S et al (2007) Evaluation of several real-time PM2.5 forecast modeling using data collected from the ICARTT/NEAQS 2004 field study. J Geophys Res 112: D10S20. doi:10.1029/2006JD007608CrossRefGoogle Scholar
  117. McMurry P (2002) A review of atmospheric aerosol measurements. Dev Environ Sci 1:443–517. CrossRefGoogle Scholar
  118. McMurry P, Wilson J (1982) Growth Laws for the formation of secondary ambient aerosols: implications for chemical conversion. Atmos Environ 16:121–134CrossRefGoogle Scholar
  119. McMurry P, Shepherd M, Vickery J (2004) Particulate Matter Science for Policy Makers. Cambridge Univ. Press, New YorkGoogle Scholar
  120. Middleton W (1952) Vision through the Atmosphere. Univers Toronto Press, TorontoCrossRefGoogle Scholar
  121. Mie G (1908) Beitrage zur Optik truber Medien, speziell Kolloidaler Mettallosungen. Ann Phyz Lpz 330:377–445CrossRefGoogle Scholar
  122. Miller A, Hidy G, Hales J, Kolb C, Werner A et al (2006) Air emission inventories in North America: a critical assessment. J Air Waste Manag Assoc 56:1115–1129CrossRefGoogle Scholar
  123. Millikan RA (1913) On the elementary electrical charge and the avogadro constant. Phys Rev 2:109–143. CrossRefGoogle Scholar
  124. Mirabel P, Katz J (1974) Binary homogeneous nucleation as a mechanism for the formation of aerosols. J Chem Phys 60:1138–1144CrossRefGoogle Scholar
  125. Mohnen VA, Lodge JP Jr (1969) General review and survey of gas-to-particle conversions (GPC). In: Podzimek J (ed) Proc. of the 7th International Conference on Condensation and Ice Nuclei. Academia Publishing House, Czechoslovak Acad Sci, Prague, pp 69-91Google Scholar
  126. Mueller P, Collins J (1980) Development of a particulate sulfate analyzer: Report EA-1492. Electric Power Research Institute, Palo AltoGoogle Scholar
  127. Nenes A, Pandis S, Pilinis C (1998) ISORROPIA: a new thermodynamic model for multiphase multicomponent inorganic aerosols. Aquat Geoch 4:123–152CrossRefGoogle Scholar
  128. National Air Surveillance Network (NASN) (1965-1968) Air quality data. National Air Pollution Control Administration, DurhamGoogle Scholar
  129. Nolan PJ, Doherty S (1950) Size and charge distribution of atmospheric condensation nuclei. Proc Roy Irish Acad 53:163–179Google Scholar
  130. Nolan PJ, Boylan RK, de Sachy GP (1925) The equilibrium of ions in the atmosphere. Proc Roy Irish Acad Sci A37:1–12Google Scholar
  131. Novakov T, Mueller P, Alcocer A, Otvos J (1972) Chemical composition of pasadena aerosol by particle size and time of day 3. Chemical states of nitrogen and sulfur by photoelectron spectroscopy. J Colloid and Interface Sci 39:225–234CrossRefGoogle Scholar
  132. Orsini D, Ma Y, Sullivan A, Sierau B, Baumann K, Weber R (2003) Refinements to the particle-into liquid sampler (PILS) for ground and aircraft measurements of water soluble aerosol composition. Atmos Environ 37:1243–1259CrossRefGoogle Scholar
  133. Pankow J (1987) Review and comparative analysis of the theories on partitioning of semi-volatile organic compounds between the atmosphere and the Earth’s surface. Atmos Environ 21:2275–2283CrossRefGoogle Scholar
  134. Pankow J (1994) An absorption model of gas/particle partitioning of organic compounds in the atmosphere. Atmos Environ 28:185–188CrossRefGoogle Scholar
  135. Penner J, Pandis S, Seinfeld J (1995) Sensitivity of direct climate forcing by atmospheric aerosols to aerosol size and composition. J Geophys Res 100:18739–18754CrossRefGoogle Scholar
  136. Pitchford M, Malm W, Schichtel B, Kumar N, Lowenthal D, Hand J (2007) Revised algorithm for estimating light extinction from IMPROVE particle speciation data. J Air Waste Manage Assoc 57:1326–1336CrossRefGoogle Scholar
  137. Podzimek J, (2000) History of atmospheric aerosol science between 1900 and, (1950) In: Preining O (ed) History of aerosol science. Verlag der Osterreichschen Akademie der Wissenschaften, Vienna, pp 57–65Google Scholar
  138. Prospero J (1996) Saharan dust transport over the north atlantic ocean and mediterranean: overview. In: Guerzoni S Chester R (eds) The impact of desert dust across the mediterranean. Kluwer, Alphen aan den Rijn, pp 133-151CrossRefGoogle Scholar
  139. Pruppacher H, Klett J (1978) Microphysics of cloud and precipitation. D Reidel, DordrechtCrossRefGoogle Scholar
  140. Ragaini R, Ralston HR, Garis D, Kaifer R (1980) Instrumental neutron activation analysis techniques for measuring trace elements in california aerosols. In: Hidy G, Mueller P, Grosjean D, Appel B, Wesolowski J ( eds) The characterization and origins of smog aerosols. Wiley, New York, pp 169–196Google Scholar
  141. Rasool S, Schneider S (1971) Atmospheric carbon dioxide and aerosols: effect of large increases on global climate. Science 173:138–141CrossRefGoogle Scholar
  142. Reiss H (1950) The kinetics of phase transitions in binary systems. J Chem Phys 18:840–848CrossRefGoogle Scholar
  143. Renzetti N, Doyle G (1959) The chemical nature of particulate in irradiated automobile exhaust. J Air Poll Contr Assoc 8:293–296CrossRefGoogle Scholar
  144. Rich T (1961) A continuous recorder for condensation nuclei. Geofisica Pura a Applicata 31:60–65CrossRefGoogle Scholar
  145. Riggio G, Chow J, Cropper P, Wang, X, Yatavelli R, Yang X, Watson J (2018). Feasibility of coupling a thermal/optical carbon analyzer to a quadrupole mass spectrometer for enhanced PM2.5 speciation. J Air Waste Manage Assoc 68(5):463-476CrossRefGoogle Scholar
  146. Robinson AL, Donahue NM, Shrivastava MK, Weitkamp EA, Sage AM, Grieshop AP, Lane TE, Pierce JR, Pandis S (2007) Rethinking organic aerosols: semivolatile emissions and photochemical aging. Science 315:1259–1262CrossRefGoogle Scholar
  147. Rogak S, Flagan R, Nguyen H (1993) The mobility and structure of aerosol agglomerates. Aerosol Sci Technol 18:25–47CrossRefGoogle Scholar
  148. Rogge W, Mazurek M, HIldemann L, Cass G, Simoneit B, (1993) Quantification of urban organic aerosols at a molecular level: identification, abundance and seasonal variation. Atmos Environ 27A:1309–1330CrossRefGoogle Scholar
  149. Salawitch R, Gobbi G, Wofsy S, McElroy M (1989) Denitrification in the antarctic stratosphere. Nature 339:525–527CrossRefGoogle Scholar
  150. Sangers J, Wang Y-Y, Kamgar-Parsi B, Dorfman J (2018) Kinetic theory of drag on objects in nearly free molecule flow. University of Maryland, Institute of Physical Science and TechnologyGoogle Scholar
  151. Saxena P, Hildemann L (1997) water absorption by organics: survey of laboratory evidence and evaluation of unifac for estimating water activity. Environ Sci Technol 31:3318–3324CrossRefGoogle Scholar
  152. Schauer J, Rogge W, Hildemann L, Mazurek M, Simoneit B (1996) Source apportionment of airborne particulate matter using organic compounds as tracers. Atmos Environ 30:3837–3855CrossRefGoogle Scholar
  153. Schichtel B, Husar R, Falke S, Wilson W (2001) Haze trends over the United States, 1980–1995. Atmos Environ 35:5205–5210CrossRefGoogle Scholar
  154. Schuetzle D, Crittendon A, Charlson R (1973) Application of computer controlled high resolution mass spectrometry to the analysis of air pollutants. J Air Poll Contr Assoc 23:704–710CrossRefGoogle Scholar
  155. Seigneur C (2001) Current status of air quality models for health risk assessment. J Air Waste Manage Assoc 51:1508–1521CrossRefGoogle Scholar
  156. Seigneur C, Pai P, Hopke P, Grosjean D (1999) Modeling atmospheric particulate matter. Environ Sci Technol 33:80A–86ACrossRefGoogle Scholar
  157. Seigneur C, Dennis R (2011) Atmospheric modeling for exposure assessment. In: Hidy G, Brook, J, Demerjian K, Molina L, Pennell W Scheffe R (eds) Technical challenges of multipollutant air quality management. Springer, New York, pp 301–327Google Scholar
  158. Seinfeld J, Pandis S (1998) Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. Wiley, New YorkGoogle Scholar
  159. Shaw G (1982) Sun photometry. Bull Am Meteorol Soc 64:4–10CrossRefGoogle Scholar
  160. Shrivastava M, Subramanian R, Rogge W, Robinson A (2007) Positive matrix factorization of molecular marker data and comparison of results from different source apportionment models. Atmos Environ 41:9353–9369CrossRefGoogle Scholar
  161. Simoneit B (1986) Characterization of organic constituents in aerosols in relation to their origin and transport: a review. Int J Environ Anal Chem 23:207–237CrossRefGoogle Scholar
  162. Skala G (1963) A new instrument for the continuous measurement of condensation nuclei. Anal Chem 35:702–706CrossRefGoogle Scholar
  163. Smoluchowski M (1917) Versuch einer methematischen theorie de koagulationskinetik kolloider losungen. Z Phys Chem 92:129–168Google Scholar
  164. Solomon P, Sioutas C (2008) Continuous and semicontinuous monitoring techniques for particulate matter mass and chemical components: a synthesis of findings from EPA’s particulate matter supersites program and related studies. J Air Waste Manage Assoc 58:164–195CrossRefGoogle Scholar
  165. Solomon P, Crumpler D, Flanagan J, Jayanty R, Rickman E, McDade C (2014) US national PM2.5 chemical speciation monitoring networks-CSN and IMPROVE: description of networks. J Air Waste Manage Assoc 64:1409–1438CrossRefGoogle Scholar
  166. Spurny K (1999) Analytical Chemistry of Aerosols. Lewis Publishers, LondonGoogle Scholar
  167. Stolzenberg M, Hering S (2003) Method for the automated measurement of fine particle nitrate in the atmosphere. Environ Sci Technol 34:907–914CrossRefGoogle Scholar
  168. Streets D, Bond T, Carmichael G, Fernandez S, Fu Q, He D, Klimont Z, Nelson S, Tsai N, Wang M, Woo J-H, Yarber K (2003) An inventory of gaseous and primary aerosol emissions in Asia in the year 2000. J Geophys Res Atmos. CrossRefGoogle Scholar
  169. Suess D, Prather K (1999) Mass spectrometry of aerosols. Chem Rev 99:3007–3036CrossRefGoogle Scholar
  170. Surratt J et al (2008) Organosulfate formation in biogenic secondary organic aerosol. J Phys Chem 112A:8345–8378CrossRefGoogle Scholar
  171. Tang IN, Munkelwitz HR (1993) Composition and temperature-dependence of the deliquescence properties of hygroscopic aerosols. Atmos Environ 27:467–473CrossRefGoogle Scholar
  172. Thajudeen T, Deshmukh S, Hogan C (2015) Langevin simulation of aggregate formation in the transition regime. Aerosol Sci Technol 49:115–125CrossRefGoogle Scholar
  173. Toon O, Pollack J (1976) A global average model of atmospheric aerosols for radiative transfer calculations. J Appl Meteorol 15:225–246CrossRefGoogle Scholar
  174. Toon O, Westphal D, Malone R, Liu M (1988) A Multidimensional model for aerosols: description of computational analogs. J Atmos Sci 45:2123–2143CrossRefGoogle Scholar
  175. Trijonis J, Malm W, Pitchford M, White W (1990) Visibility existing and historical conditions-causes and effects: Report 24. In: Irving P (ed) Acid deposition: state of science and technology. National Acid Precipitation Assessment Program, WashingtonGoogle Scholar
  176. Tsang T, Hippe J (1988) Asymptotic behavior of aerosol growth in the free molecule regime. Aerosol Sci and Technol 8:265–278CrossRefGoogle Scholar
  177. Turpin BJ, Huntzicker JJ (1991) Secondary formation of organic aerosol in the Los Angeles Basin: A descriptive analysis of organic and elemental carbon concentrations. Atmos Environ 25A:207–215CrossRefGoogle Scholar
  178. Turpin B, Lim H-J (2001) Species contributions to pm2.5 mass concentrations: revisiting common assumptions for estimating organic mass. Aerosol Sci Technol 35:602–610CrossRefGoogle Scholar
  179. Twomey S (1991) Aerosols, clouds and radiation. Atmos Environ 25A:2435–2442CrossRefGoogle Scholar
  180. Tyndall J (1868) On the blue colour of the sky: the polarization of skylight and the polarization of light by cloudy matter generally. Proc Royal Soc (Lond) 17:223–233. CrossRefGoogle Scholar
  181. U.S. Environmental Protection Agency (1994) QA handbook for air pollution measurement systems: vol I-A field guide to environmental quality assurance. US Environmental Protection Agency, Research Triangle Park Google Scholar
  182. U.S. Environmental Protection Agency (2013) QA handbook for air pollution measurement systems: vol II Ambient air monitoring program. U.S Environmental Protection Agency, Research Triangle Park Google Scholar
  183. Uthe E (1983) Application of surface based and airborne lidar systems for environmental monitoring. J Air Poll Contr Assoc 33:1149–1157CrossRefGoogle Scholar
  184. Wanguang L, Davis E (1996) Aerosol evaporation in the transition regime. Aerosol Sci Technol 25:11–12CrossRefGoogle Scholar
  185. Watson JG (2002) Visibility: science and regulation. J Air Waste Manage Assoc 52:628–713CrossRefGoogle Scholar
  186. Watson JG, Cooper JA, Huntzicker JJ (1984) The effective variance weighting for least squares calculations applied to the mass balance receptor model. Atmos Environ 18:1347–1355CrossRefGoogle Scholar
  187. Watson JG, Bowen JL, Chow JC, Rogers CF, Ruby MG, Rood MJ, Egami RT (1989) High volume measurement of size classified suspended particulate matter. In: Lodge JP (ed) Methods of air sampling and analysis, 3rd edn. Lewis Publishers Inc, Chelsea, pp 427–439Google Scholar
  188. Watson JG, Fujita E, Chow JC, Zielinska B, Richards LW, Neff W, Dietrich D (1998) Northern front range air quality study: Final report 1. Desert Research Institute, RenoGoogle Scholar
  189. Watson JG, Zhu T, Chow JC, Engelbrecht J, Fujita EM, Wilson WE (2002) Receptor modeling application framework for particle source apportionment. Chemosphere 49:1093–1136. CrossRefGoogle Scholar
  190. Watson JG, Chow JC, Engling G, Chen L-W, Wang XL (2016) Source apportionment: principles and methods. In: Harrison RM (ed) Airborne particulate matter: sources, atmospheric processes and health. Royal Society of Chemistry, London, pp 72–125CrossRefGoogle Scholar
  191. Watson JG (1979) Chemical element balance receptor model methodology for assessing the sources of fine and total suspended particulate matter in Portland, Oregon. Ph. D. Thesis. Oregon Graduate Center, Portland, ORGoogle Scholar
  192. Weber R, Marti J, McMurry P, Eisele F, Tanner RD, Jefferson A (1997) Measurements of new particle formation and ultrafine particle growth rates at a clean continental site. J Geophys Res 102:4375–4385CrossRefGoogle Scholar
  193. Weber R, Orsini D, Daun Y, Lee Y-N, Klotz P, Brechtel FG (2001) A particle-into-liquid collector for rapid measurements of aerosol chemical composition. Aerosol Sci Technol 35:718–727CrossRefGoogle Scholar
  194. Wedding J, Weingard M (1993) An automatic particle sampler with beta gauging. J Air Waste Manage Assoc 43:475–479CrossRefGoogle Scholar
  195. Went F (1960) Organic matter in the atmosphere and its possible relation to petroleum formation. Proc Natl Acad Sci US 46:212–221CrossRefGoogle Scholar
  196. Whitby K, Sverdrup G (1980) California aerosols: their physical and chemical characterization. In: Hidy G, Mueller P, Grosjean D, Appel B, Wesolowski J (eds) The characterization and origins of smog aerosols. Wiley, New York, pp 477–518Google Scholar
  197. Whitby K, Liu B, Husar R, Barsic N (1972) The minnesota aerosol-analyzing system used in the los angeles smog project. J Colloid Interface Sci 39:136–164CrossRefGoogle Scholar
  198. Whytlaw Gray R, Patterson H (1932) Smoke. Arnold, LondonGoogle Scholar
  199. Willeke K, Baron PA (1993) Aerosol measurement: principles, techniques, and applications. Van Nostrand Reinhold, New YorkGoogle Scholar
  200. Wilson CTR (1897) Condensation of water vapour in the presence of dust-free air and other gases. Phil Trans A 189:265CrossRefGoogle Scholar
  201. Wilson W, Suh H (1997) Fine particles and coarse particles: concentration relationships relevant to epidemiological studies. J Air Waste Manage Assoc 47:1238–1249CrossRefGoogle Scholar
  202. Winkler P, Junge C (1972) The growth of atmospheric aerosol particles as a function of relative humidity. J Rech Atmos (Henri Dessens Memorial) 6:617–618Google Scholar
  203. Wolff G, Countess R, Groblicki P, Ferman M, Cadle S, Muhlbaier J (1981) Visibility-reducing species in the denver “brown cloud”-ii sources and temporal patterns. Atmos Environ 15:2485–2902CrossRefGoogle Scholar
  204. World Meteorological Organization (WMO) (2001) Global atmospheric watch measurements guide: Report no. 143. WMO, GenevaGoogle Scholar
  205. Yu F (2010) Ion-mediated nucleation in the atmosphere: key controlling parameters, implications and look-up table. J Geophys Res 115:D03206. 12360Google Scholar
  206. Yu F, Luo G (2009) Simulation of particle size distribution with a global aerosol model: contribution of nucleation to aerosol and CCN number concentrations. Atmos Chem Phys 9:7691–7710CrossRefGoogle Scholar
  207. Zaveri R, Barnard J, Easter R, Riemer N, West M (2010) Particle-resolved simulation of aerosol size, composition, mixing state, and the associated optical and cloud condensation nuclei activation properties in an evolving urban plume. J Geophys Res 115:D17210. CrossRefGoogle Scholar
  208. Zhang Q, Alfarra MR, Worsnop DR, Allan JD, Coe H, Canagaratna MR, Jimenez JL (2005) Deconvolution and quantification of hydrocarbon-like and oxygenated organic aerosols based on aerosol mass spectrometry. Environ Sci Technol 39:4938–4952CrossRefGoogle Scholar
  209. Zhang R, Khalizov A, Wang, L, Xi W (2012) Nucleation and Growth of Nanoparticles in the Atmosphere. Chem Rev 112:1957–2011CrossRefGoogle Scholar
  210. Zheng M, Cass G, Schauer J, Edgerton E (2002) Source apportionment of PM2.5 in the southeastern United States using solvent extractable compounds as tracers. Environ Sci Tech 36:2361–2371CrossRefGoogle Scholar

Copyright information

© Institute of Earth Environment, Chinese Academy Sciences 2019

Authors and Affiliations

  1. 1.Envair/AerochemPlacitasUSA

Personalised recommendations