Advertisement

Journal of Elliptic and Parabolic Equations

, Volume 5, Issue 2, pp 423–471 | Cite as

Accelerated front propagation for monostable equations with nonlocal diffusion: multidimensional case

  • Dmitri FinkelshteinEmail author
  • Yuri Kondratiev
  • Pasha Tkachov
Article
  • 7 Downloads

Abstract

We describe acceleration of the front propagation for solutions to a class of monostable nonlinear equations with a nonlocal diffusion in \({{\mathbb {R}}^d}\), \(d\ge 1\). We show that the acceleration takes place if either the diffusion kernel or the initial condition has ‘regular’ heavy tails in \({{\mathbb {R}}^d}\) (in particular, decays slower than exponentially). Under general assumptions which can be verified for particular models, we present sharp estimates for the time-space zone which separates the region of convergence to the unstable zero solution with the region of convergence to the stable positive constant solution. We show the variety of different possible rates of the propagation starting from a little bit faster than a linear one up to the exponential rate. The paper generalizes to the case \(d>1\) our results for the case \(d=1\) obtained early in Finkelshtein and Tkachov (Appl Anal 98(4):756–780, 2019).

Keywords

Nonlocal diffusion Reaction–diffusion equation Front propagation Acceleration Monostable equation Nonlocal nonlinearity Long-time behavior Integral equation 

Mathematics Subject Classification

35B40 35K57 47G20 45G10 

Notes

Funding

No funding was received.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Aguerrea, M., Gomez, C., Trofimchuk, S.: On uniqueness of semi-wavefronts. Math. Ann. 354(1), 73–109 (2012)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Alfaro, M., Coville, J.: Propagation phenomena in monostable integro-differential equations: acceleration or not? J. Differ. Equ. 263(9), 5727–5758 (2017)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Andreu-Vaillo, F., Mazón, J.M., Rossi, J.D., Toledo-Melero, J.J.: Nonlocal diffusion problems, Mathematical Surveys and Monographs, vol. 165. AMS Providence, RI, xvi+256 pp (2010)Google Scholar
  4. 4.
    Aronson, D.G.: The asymptotic speed of propagation of a simple epidemic. In: Nonlinear Diffusion (NSF-CBMS Regional Conf. Nonlinear Diffusion Equations, Univ. Houston, Houston, 1976), pp. 1–23. Res. Notes Math., No. 14. Pitman, London (1977)Google Scholar
  5. 5.
    Berestycki, H., Coville, J., Vo, H.-H.: Persistence criteria for populations with non-local dispersion. J. Math. Biol. 72(7), 1693–1745 (2016)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Berestycki, H., Hamel, F.: Front propagation in periodic excitable media. Commun. Pure Appl. Math. 55(8), 949–1032 (2002)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Berestycki, H., Nadin, G., Perthame, B., Ryzhik, L.: The non-local Fisher-KPP equation: travelling waves and steady states. Nonlinearity 22(12), 2813–2844 (2009)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Bolker, B., Pacala, S.W.: Using moment equations to understand stochastically driven spatial pattern formation in ecological systems. Theor. Popul. Biol. 52(3), 179–197 (1997)zbMATHGoogle Scholar
  9. 9.
    Bonnefon, O., Coville, J., Garnier, J., Roques, L.: Inside dynamics of solutions of integro-differential equations. Discrete Contin. Dyn. Syst. Ser. B 19(10), 3057–3085 (2014)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Bouin, E., Garnier, J., Henderson, C., Patout, F.: Thin front limit of an integro-differential Fisher-KPP equation with fat-tailed kernels. SIAM J. Math. Anal. 50(3), 3365–3394 (2018)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Brändle, C., Chasseigne, E., Ferreira, R.: Unbounded solutions of the nonlocal heat equation. Commun. Pure Appl. Anal. 10(6), 1663–1686 (2011)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Britton, N.: Spatial structures and periodic travelling waves in an integro-differential reactiondiffusion population model. SIAM J. Appl. Math. 50(6), 1663–1688 (1990)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Cabré, X., Coulon, A.-C., Roquejoffre, J.-M.: Propagation in Fisher-KPP type equations with fractional diffusion in periodic media. C. R. Math. Acad. Sci. Paris 350(19–20), 885–890 (2012)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Cabré, X., Roquejoffre, J.-M.: The influence of fractional diffusion in Fisher-KPP equations. Commun. Math. Phys. 320(3), 679–722 (2013)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Coulon, A.-C., Roquejoffre, J.-M.: Transition between linear and exponential propagation in Fisher-KPP type reaction-diffusion equations. Commun. Partial Differ. Equ. 37(11), 2029–2049 (2012)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Coville, J., Dávila, J., Martínez, S.: Nonlocal anisotropic dispersal with monostable nonlinearity. J. Differ. Equ. 244(12), 3080–3118 (2008)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Coville, J., Dupaigne, L.: Propagation speed of travelling fronts in non local reaction-diffusion equations. Nonlinear Anal. 60(5), 797–819 (2005)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Diekmann, O.: On a nonlinear integral equation arising in mathematical epidemiology. In: Differential Equations and Applications (Proc. Third Scheveningen Conf., Scheveningen, 1977), North-Holland Math. Stud., vol. 31, pp. 133–140. North-Holland, Amsterdam (1978)Google Scholar
  19. 19.
    Durrett, R.: Crabgrass, measles and gypsy moths: an introduction to modern probability. Bull. Am. Math. Soc. (New Ser.) 18(2), 117–143 (1988)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Evans, L.C., Souganidis, P.E.: A PDE approach to geometric optics for certain semilinear parabolic equations. Indiana Univ. Math. J. 38(1), 141–172 (1989)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Gourley, S., Chaplain, M., Davidson, F.: Spatio-temporal pattern formation in a nonlocal reaction-diffusion equation. Dyn. Syst. 16(2), 173–192 (2001)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Faye, G., Holzer, M.: Modulated traveling fronts for a nonlocal Fisher-KPP equation: a dynamical systems approach. J. Differ. Equ. 258(7), 2257–2289 (2015)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Felmer, P., Yangari, M.: Fast propagation for fractional KPP equations with slowly decaying initial conditions. SIAM J. Math. Anal. 45(2), 662–678 (2013)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Fife, P.C.: Mathematical aspects of reacting and diffusing systems, Lecture Notes in Biomathematics, vol. 28. Springer, Berlin, iv+185 pp (1979)zbMATHGoogle Scholar
  25. 25.
    Finkelshtein, D., Kondratiev, Y., Kozitsky, Y., Kutoviy, O.: The statistical dynamics of a spatial logistic model and the related kinetic equation. Math. Models Methods Appl. Sci. 25(2), 343–370 (2015)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Finkelshtein, D., Kondratiev, Y., Kutoviy, O.: Semigroup approach to birth-and-death stochastic dynamics in continuum. J. Funct. Anal. 262(3), 1274–1308 (2012)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Finkelshtein, D., Kondratiev, Y., Tkachov, P.: Existence and properties of traveling waves for doubly nonlocal Fisher-KPP equations. Electron. J. Differ. Equ. 2019(10), 1–27 (2019)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Finkelshtein, D., Kondratiev, Y., Tkachov, P.: Doubly nonlocal Fisher-KPP equation: speeds and uniqueness of traveling waves. J. Math. Anal. Appl. 475(1), 94–122 (2019)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Finkelshtein, D., Kondratiev, Y., Tkachov, P.: Doubly nonlocal Fisher-KPP equation: front propagation. Appl. Anal. (2019).  https://doi.org/10.1080/00036811.2019.1643011
  30. 30.
    Finkelshtein, D., Tkachov, P.: Accelerated nonlocal nonsymmetric dispersion for monostable equations on the real line. Appl. Anal. 98(4), 756–780 (2019)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Finkelshtein, D., Tkachov, P.: The hair-trigger effect for a class of nonlocal nonlinear equations. Nonlinearity 31(6), 2442–2479 (2018)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Finkelshtein, D., Tkachov, P.: Kesten’s bound for sub-exponential densities on the real line and its multi-dimensional analogues. Adv. Appl. Probab. 50(2), 373–395 (2018)MathSciNetGoogle Scholar
  33. 33.
    Fisher, R.: The wave of advance of advantageous genes. Ann. Eugen. 7, 335–369 (1937)zbMATHGoogle Scholar
  34. 34.
    Foss, S., Korshunov, D., Zachary, S.: An Introduction to Heavy-Tailed and Subexponential Distributions. Springer Series in Operations Research and Financial Engineering, 2nd edn. Springer, New York, xii+157 pp (2013)zbMATHGoogle Scholar
  35. 35.
    Fournier, N., Méléard, S.: A microscopic probabilistic description of a locally regulated population and macroscopic approximations. Ann. Appl. Probab. 14(4), 1880–1919 (2004)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Garnier, J.: Accelerating solutions in integro-differential equations. SIAM J. Math. Anal. 43(4), 1955–1974 (2011)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Hallatschek, O., Fisher, D.S.: Acceleration of evolutionary spread by long-range dispersal. Proc. Natl. Acad. Sci. 111(46), E4911–E4919 (2014)Google Scholar
  38. 38.
    Hamel, F., Garnier, J., Roques, L.: Transition fronts and stretching phenomena for a general class of reaction-dispersion equations. Discrete Contin. Dyn. Syst. Ser. A 37(2), 743–756 (2017)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Hamel, F., Roques, L.: Fast propagation for KPP equations with slowly decaying initial conditions. J. Differ. Equ. 249(7), 1726–1745 (2010)MathSciNetzbMATHGoogle Scholar
  40. 40.
    Henderson, C.: Propagation of solutions to the Fisher-KPP equation with slowly decaying initial data. Nonlinearity 29(11), 3215 (2016)MathSciNetzbMATHGoogle Scholar
  41. 41.
    Henry, D.: Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, vol. 840. Springer, Berlin, iv+348 pp (1981)zbMATHGoogle Scholar
  42. 42.
    Kolmogorov, A.N., Petrovsky, I.G., Piskunov, N.S.: Étude de l’équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique. Bull. Univ. État Moscou Sér. Inter. A 1, 1–26 (1937)Google Scholar
  43. 43.
    Kondratiev, Y., Molchanov, S., Piatnitski, A., Zhizhina, E.: Resolvent bounds for jump generators. Appl. Anal. 97(3), 323–336 (2018)MathSciNetGoogle Scholar
  44. 44.
    Kuehn, C., Tkachov, P.: Pattern formation in the doubly-nonlocal Fisher-KPP equation. Discrete Contin. Dyn. Syst. 39(4), 2077–2100 (2019)MathSciNetzbMATHGoogle Scholar
  45. 45.
    Lewis, M.A., Petrovskii, S.V., Potts, J.R.: The Mathematics Behind Biological Invasions, Interdisciplinary Applied Mathematics, vol. 44. Springer, Cham, xvi+362 pp. With a foreword by James D. Murray (2016)Google Scholar
  46. 46.
    Liu, B.R., Kot, M.: Accelerating invasions and the asymptotics of fat-tailed dispersal. J. Theor. Biol. 471, 22–41 (2019)MathSciNetzbMATHGoogle Scholar
  47. 47.
    Medlock, J., Kot, M.: Spreading disease: integro-differential equations old and new. Math. Biosci. 184(2), 201–222 (2003)MathSciNetzbMATHGoogle Scholar
  48. 48.
    Méléard, S., Mirrahimi, S.: Singular limits for reaction-diffusion equations with fractional Laplacian and local or nonlocal nonlinearity. Commun. Partial Differ. Equ. 40(5), 957–993 (2015)MathSciNetzbMATHGoogle Scholar
  49. 49.
    Mollison, D.: Possible velocities for a simple epidemic. Adv. Appl. Probab. 4, 233–257 (1972)MathSciNetzbMATHGoogle Scholar
  50. 50.
    Mollison, D.: The rate of spatial propagation of simple epidemics. In: Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971), vol. III: Probability Theory, pp. 579–614. Univ. California Press, Berkeley (1972)Google Scholar
  51. 51.
    Murray, J.D.: Mathematical Biology. II, Interdisciplinary Applied Mathematics, vol. 18, 3rd edn. Springer, New York, xxvi+811 pp. Spatial models and biomedical applications (2003)Google Scholar
  52. 52.
    Perthame, B., Souganidis, P.E.: Front propagation for a jump process model arising in spatial ecology. Discrete Contin. Dyn. Syst. 13(5), 1235–1246 (2005)MathSciNetzbMATHGoogle Scholar
  53. 53.
    Schumacher, K.: Travelling-front solutions for integro-differential equations. I. J. Reine Angew. Math. 316, 54–70 (1980)MathSciNetzbMATHGoogle Scholar
  54. 54.
    Shen, W., Zhang, A.: Spreading speeds for monostable equations with nonlocal dispersal in space periodic habitats. J. Differ. Equ. 249(4), 747–795 (2010)MathSciNetzbMATHGoogle Scholar
  55. 55.
    Sun, Y.-J., Li, W.-T., Wang, Z.-C.: Traveling waves for a nonlocal anisotropic dispersal equation with monostable nonlinearity. Nonlinear Anal. 74(3), 814–826 (2011)MathSciNetzbMATHGoogle Scholar
  56. 56.
    Weinberger, H.: On sufficient conditions for a linearly determinate spreading speed. Discrete Contin. Dyn. Syst. Ser. B 17(6), 2267–2280 (2012)MathSciNetzbMATHGoogle Scholar
  57. 57.
    Weinberger, H.F.: Asymptotic behavior of a model in population genetics, pp. 47–96. Lecture Notes in Mathematics, vol. 648 (1978)Google Scholar
  58. 58.
    Xu, W.-B., Li, W.-T., Ruan, S.: Fast propagation for reaction-diffusion cooperative systems. J. Differ. Equ. 265(2), 645–670 (2018)MathSciNetzbMATHGoogle Scholar
  59. 59.
    Yagisita, H.: Existence and nonexistence of traveling waves for a nonlocal monostable equation. Publ. Res. Inst. Math. Sci. 45(4), 925–953 (2009)MathSciNetzbMATHGoogle Scholar
  60. 60.
    Zhang, G.-B., Li, W.-T., Wang, Z.-C.: Spreading speeds and traveling waves for nonlocal dispersal equations with degenerate monostable nonlinearity. J. Differ. Equ. 252(9), 5096–5124 (2012)MathSciNetzbMATHGoogle Scholar

Copyright information

© Orthogonal Publisher and Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of MathematicsSwansea UniversitySwanseaUK
  2. 2.Fakultät für MathematikUniversität BielefeldBielefeldGermany
  3. 3.Gran Sasso Science InstituteL’AquilaItaly

Personalised recommendations