Journal of Elliptic and Parabolic Equations

, Volume 5, Issue 2, pp 325–347

# A priori estimates for solutions to a class of obstacle problems under p, q-growth conditions

Article

## Abstract

In this paper we would like to complement the results contained in Gavioli (Forum Math, to appear) by dealing with the higher differentiability of integer order of solutions to a class of obstacle problems under non-standard growth conditions, fulfilling variational inequalities of the kind
\begin{aligned} \int _{\varOmega } \langle {\mathcal {A}}(x, Du), D(\varphi - u) \rangle \, dx \ge 0 \qquad \forall \, \varphi \in {\mathcal {K}}_{\psi }(\varOmega ). \end{aligned}
Here the operator $${\mathcal {A}}$$ satisfies pq-growth conditions with p and q related by
\begin{aligned} \frac{q}{p} < 1 + \frac{1}{n} - \frac{1}{r}\,, \end{aligned}
(1)
being $$r>n$$. More precisely the function $$\psi \in W^{1,p}(\varOmega )$$, called obstacle, is such that $$D\psi \in W^{1,r}_{\mathrm{loc}}(\varOmega )$$ and $${\mathcal {K}}_{\psi }=\{w \in W^{1,p}(\varOmega ): w \ge \psi \,\, \text {a.e. in }\varOmega \}$$ is the class of admissible functions. The main difference with the previous work (Gavioli in Forum Math, to appear) is that here we assume the same regularity both for the gradient of the obstacle $$D\psi$$ and for the partial map $$x\mapsto {\mathcal {A}}(x,\xi )$$, that is, a higher differentiability of Sobolev order in the space $$W^{1,r}$$ with the same $$r>n$$ appearing in (1). For the sake of clarity, we focus on the derivation of the a priori estimates since the approximation procedure is standard and can be found in Cupini et al. (Nonlinear Anal 154:7–24, 2017), Cupini et al. (Differ Equ 265(9):4375–4416, 2018), Cupini et al. (Nonlinear Anal 54(4):591–616, 2003), Eleuteri et al. Ann Mat Pura Appl (195(5):1575–1603, 2016) and Gavioli (Forum Math, to appear).

## Keywords

Variational inequalities Obstacle problems Higher differentiability Non-standard growth

## Mathematics Subject Classification

35J87 49J40 47J20

## References

1. 1.
Baisón, A.L., Clop, A., Giova, R., Orobitg, J., Passarelli di Napoli, A.: Fractional differentiability for solutions of nonlinear elliptic equations. Potential Anal. 46(3), 403–430 (2017)
2. 2.
Benassi, C., Caselli, M.: Lipschitz continuity results for a class of obstacle problems, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. (to appear)Google Scholar
3. 3.
Bögelein, V., Duzaar, F., Marcellini, P.: Parabolic systems with p, q-growth: a variational approach. Arch. Ration. Mech. Anal. 210(1), 219–267 (2013)
4. 4.
Bögelein, V., Duzaar, F., Marcellini, P.: Existence of evolutionary variational solutions via the calculus of variations. J. Differ. Equ. 256(12), 3912–3942 (2014)
5. 5.
Bögelein, V., Duzaar, F., Marcellini, P.: A time dependent variational approach to image restoration. SIAM J. Imaging Sci. 8(2), 968–1006 (2015)
6. 6.
Carrozza, M., Kristensen, J., Passarelli di Napoli, A.: Higher differentiability of minimizers of convex variational integrals. Ann. Inst. H. Poincaré Anal. Non Linéaire 28(3), 395–411 (2011)
7. 7.
Clop, A., Giova, R., Passarelli di Napoli, A.: Besov regularity for solutions of $$p$$-harmonic equations. Adv. Nonlinear Anal. 8(1), 395–411 (2019)
8. 8.
Colombo, M., Mingione, G.: Regularity for double phase variational problems. Arch. Ration. Mech. Anal. 215(2), 443–496 (2015)
9. 9.
Colombo, M., Mingione, G.: Bounded minimisers of double phase variational integrals. Arch. Ration. Mech. Anal. 218(1), 219–273 (2015)
10. 10.
Cupini, G., Giannetti, F., Giova, R., Passarelli di Napoli, A.: Higher integrability for minimizers of asymptotically convex integrals with discontinuous coefficients. Nonlinear Anal. 154, 7–24 (2017)
11. 11.
Cupini, G., Giannetti, F., Giova, R., Passarelli di Napoli, A.: Regularity results for vectorial minimizers of a class of degenerate convex integrals. J. Differ. Equ. 265(9), 4375–4416 (2018)
12. 12.
Cupini, G., Guidorzi, M., Mascolo, E.: Regularity of minimizers of vectorial integrals with p-q growth. Nonlinear Anal. 54(4), 591–616 (2003)
13. 13.
Cupini, G., Marcellini, P., Mascolo, E.: Existence and regularity for elliptic equations under $$p, q$$-growth. Adv. Differ. Equ. 19(7–8), 693–724 (2014)
14. 14.
De Filippis, C., Palatucci, G.: Hölder regularity for nonlocal double phase equations. J. Differ. Equ. 267(1), 547–586 (2018)
15. 15.
Eleuteri, M., Marcellini, P., Mascolo, E.: Lipschitz continuity for energy integrals with variable exponents, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 27(1), 61–87 (2016)
16. 16.
Eleuteri, M., Marcellini, P., Mascolo, E.: Lipschitz estimates for systems with ellipticity conditions at infinity. Ann. Mat. Pura Appl. 195(5), 1575–1603 (2016)
17. 17.
Eleuteri, M., Marcellini, P., Mascolo, E.: Regularity for scalar integrals without structure conditions. Adv. Calc. Var. (2018).
18. 18.
Eleuteri, M., Passarelli di Napoli, A.: Higher differentiability for solutions to a class of obstacle problems, Calc. Var., 57 (5), 115 (2018)Google Scholar
19. 19.
Eleuteri, M., Passarelli di Napoli, A.: Regularity results for a class of non-differentiable obstacle problems. Nonlinear Anal. (2019).
20. 20.
Gavioli, C.: Higher differentiability of solutions to a class of obstacle problems under non-standard growth conditions, Forum Math. (to appear)Google Scholar
21. 21.
Giova, R.: Higher differentiability for n-harmonic systems with Sobolev coefficients. J. Differ. Equ. 259(1), 5667–5687 (2015)
22. 22.
Giova, R., Passarelli di Napoli, A.: Regularity results for a priori bounded minimizers of non-autonomous functionals with discontinuous coefficients. Adv. Calc. Var. 12(1), 85–110 (2019)
23. 23.
Giusti, E.: Direct methods in the calculus of variations. World Scientific, River Edge (2003)
24. 24.
Hajłasz, P.: Sobolev spaces on an arbitrary metric space. Potential Anal. 5(4), 403–415 (1996)
25. 25.
Marcellini, P.: Regularity of minimizers of integrals of the calculus of variations with nonstandard growth conditions. Arch. Ration. Mech. Anal. 105(3), 267–289 (1989)
26. 26.
Marcellini, P.: Regularity and existence of solutions of elliptic equations with $$p, q$$-growth conditions. J. Differ. Equ. 90(1), 1–30 (1991)
27. 27.
Marcellini, P.: Regularity for elliptic equations with general growth conditions. J. Differ. Equ. 105(2), 296–333 (1993)
28. 28.
Marcellini, P.: Regularity for some scalar variational problems under general growth conditions. J. Optim. Theory Appl. 90(1), 161–181 (1996)
29. 29.
Marcellini, P.: A variational approach to parabolic equations under general and $$p, q$$-growth conditions. Nonlinear Anal. (2019).
30. 30.
Passarelli di Napoli, A.: Higher differentiability of minimizers of variational integrals with Sobolev coefficients. Adv. Calc. Var. 7(1), 59–89 (2014)
31. 31.
Passarelli di Napoli, A.: Higher differentiability of solutions of elliptic systems with Sobolev coefficients: the case $$p = n = 2$$. Potential Anal. 41(3), 715–735 (2014)
32. 32.
Passarelli di Napoli, A.: Regularity results for non-autonomous variational integrals with discontinuous coefficients, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 26(4), 475–496 (2015)
33. 33.
Ragusa, M.A., Tachikawa, A.: Regularity for minimizers for functionals of double phase with variable exponents. Adv. Nonlinear Anal. 9(1), 710–728 (2019)