Journal of Elliptic and Parabolic Equations

, Volume 5, Issue 2, pp 281–323 | Cite as

Explicit expression of the microscopic renormalized energy for a pinned Ginzburg–Landau functional

  • Mickaël Dos SantosEmail author


We get a new expression of the microscopic renormalized energy for a pinned Ginzburg–Landau type energy modeling small impurities. This renormalized energy occurs in the simplified 2D Ginzburg–Landau model ignoring the magnetic field as well as the full planar magnetic model. As in the homogenous case, when dealing with heterogeneities, the notion of renormalized energies is crucial in the study of the variational Ginzburg–Landau type problems. The key point of this article is the location of singularities inside a small impurity. The microscopic renormalized energy is defined via the minimization of a Dirichlet type functional with an \(L^\infty \)-weight. Namely, the main result of the present article is a sharp asymptotic estimate for the minimization of a weighted Dirichlet energy evaluated among \(\mathbb {S}^1\)-valued maps defined on a perforated domain with shrinking holes (in the spirit of the famous work of Bethuel–Brezis–Hélein). The renormalized energy depends on the center of the holes and it is expressed in a computable way. In particular we get an explicit expression of the microscopic renormalized energy when the weight in the Dirichlet energy models an impurity which is a disk. In this case we proceed also to the minimization of the renormalized energy.


Ginzburg–Landau type energy Pinning term Renormalized energy \(\mathbb {S}^1\)-valued function Weighted Dirichlet energy 

Mathematics Subject Classification

49K20 35J66 35J20 



The author would like to thank Petru Mironescu for fruitful discussions.

Compliance with ethical standards

Conflict of interest

The author declares that there is no conflict of interest.


  1. 1.
    Aftalion, A., Sandier, E., Serfaty, S.: Pinning phenomena in the Ginzburg-Landau model of superconductivity. J. Math. Pures Appl. 80(3), 339–372 (2001)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Alicandro, R., Ponsiglione, M.: Ginzburg-Landau functionals and renormalized energy: A revised \(\Gamma \)-convergence approach. J. Funct. Anal. 266(8), 4890–4907 (2014)MathSciNetCrossRefGoogle Scholar
  3. 3.
    André, N., Bauman, P., Phillips, D.: Vortex pinning with bounded fields for the Ginzburg–Landau equation. Ann. Inst. H. Poincare Anal. Non Linéaire 20(4), 705–729 (2003)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bethuel, F., Brezis, H., Hélein, F.: Ginzburg-Landau Vortices. Progress in Nonlinear Differential Equations and their Applications, 13. Birkhäuser Boston Inc., Boston, MA (1994)Google Scholar
  5. 5.
    Dos Santos, M.: Défauts de vorticité dans un supraconducteur en présence d’impuretés. PhD thesis, Univ. Lyon 1 (2010)Google Scholar
  6. 6.
    Dos Santos, M.: The Ginzburg-Landau functional with a discontinuous and rapidly oscillating pinning term. Part II: the non-zero degree case. Indiana Univ. Math. J. 62(2), 551–641 (2013)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Dos Santos, M.: Microscopic renormalized energy for a pinned Ginzburg–Landau functional. Calc. Var. Partial Differ. Equ. 53(1–2), 65–89 (2015)CrossRefGoogle Scholar
  8. 8.
    Dos Santos, M.: Magnetic Ginzburg–Landau energy with a periodic rapidly oscillating and diluted pinning term. preprint (2019)Google Scholar
  9. 9.
    Dos Santos, M., Misiats, O.: Ginzburg-Landau model with small pinning domains. Netw. Heterog. Media 6(4), 715–753 (2011)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Kachmar, A.: Magnetic vortices for a Ginzburg-Landau type energy with discontinuous constraint. ESAIM Control Optim. Calcul. Var. 16(3), 545–580 (2009)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Lamy, X., Mironescu, P.: Existence of critical points with semi-stiff boundary conditions for singular perturbation problems in simply connected planar domains. J. Math. Pures Appl. 102(2), 385–418 (2014)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Lassoued, L., Mironescu, P.: Ginzburg-Landau type energy with discontinuous constraint. J. Anal. Math. 77, 1–26 (1999)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Lefter, C., Rădulescu, V.: Minimization problems and corresponding renormalized energies. Differ. Int. Eq 9(5), 903–917 (1996)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Sandier, E., Serfaty, S.: Vortices in the Magnetic Ginzburg–Landau Model. Birkhäuser Boston Inc., Boston (2007)CrossRefGoogle Scholar
  15. 15.
    Sauvageot, M.: Homogenization for the Ginzburg–Landau equation. Adv. Math. Sci. Appl. 21(2), 493–517 (2011)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Simader, C., Sohr, H.: The Dirichlet Problem for the Laplacian in Bounded and Unbounded Domains, vol. 360. CRC, Boca Raton (1996)zbMATHGoogle Scholar

Copyright information

© Orthogonal Publisher and Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.LAMA, University Paris Est Creteil, University Gustave Eiffel, UPEM, CNRSCréteilFrance

Personalised recommendations