Advertisement

Sleep and Vigilance

, Volume 2, Issue 2, pp 111–118 | Cite as

Correlations Between Waist and Neck Circumferences and Obstructive Sleep Apnea Characteristics

  • Chloe Tom
  • Bhaswati Roy
  • Ruchi Vig
  • Daniel W. Kang
  • Ravi S. Aysola
  • Mary A. Woo
  • Ronald M. Harper
  • Rajesh KumarEmail author
Original Article
  • 202 Downloads

Abstract

Purpose

The body mass index (BMI), an estimate of body fat, provides a rather imprecise indication of risk for obstructive sleep apnea (OSA). We examined whether other measures, including waist and neck circumferences, provide improved indicators of risk in treatment-naïve OSA subjects.

Methods

We studied 59 OSA subjects [age, 48.8 ± 10.0 years; BMI, 31.9 ± 6.6 kg/m2; apnea–hypopnea index (AHI), 38.5 ± 23.0 events/h; sleep-efficiency index (SEI, n = 52), 78.6 ± 14.4%; lowest oxygen saturation (SaO2 nadir), 79.5 ± 8.0%; systolic blood pressure (BP), 127.4 ± 15.7 mmHg; diastolic BP, 80.1 ± 9.1 mmHg; 43 male], and determined waist and neck circumferences (waist, 107.4 ± 15.3 cm; neck, 41.8 ± 4.7 cm), daytime sleepiness [Epworth sleepiness scale (ESS), 8.7 ± 4.6], sleep quality [Pittsburgh sleep quality index (PSQI), 8.5 ± 4.1], depression levels [Beck Depression Inventory II (BDI-II), 6.6 ± 5.7], and anxiety levels [Beck anxiety inventory (BAI), 6.2 ± 7.2]. We used partial correlation procedures (covariates, age, and gender) to examine associations between BMI, and waist and neck circumferences vs. AHI, sleep, and neuropsychological variables.

Results

BMI, and waist and neck circumferences were significantly correlated with SaO2 nadir (BMI; r = − 0.423, p = 0.001; waist; r = − 0.457, p < 0.001; neck; r = − 0.263, p = 0.048), AHI (BMI; r = 0.349, p = 0.008; waist; r = 0.459, p < 0.001; neck; r = 0.276, p = 0.038), and systolic BP (BMI; r = 0.354, p = 0.007; waist; r = 0.321, p = 0.015; neck; r = 0.388, p = 0.003). SEI was significantly correlated with waist circumference (r = 0.28, p = 0.049), but higher with BMI (r = 0.291, p = 0.04).

Conclusions

No other significant waist or neck correlations emerged. This study suggests that waist and neck measures correlate better than BMI with select disease severity (SaO2 nadir and AHI) in OSA subjects. The findings offer an easily measured, ancillary means to assess OSA risk.

Keywords

Depression Anxiety Body mass index Apnea–hypopnea index Systolic blood pressure 

Abbreviations

AHI

Apnea–hypopnea index

AI

Arousal index

BAI

Beck Anxiety Inventory

BDI-II

Beck Depression Inventory (II)

BMI

Body mass index

BP

Blood pressure

ESS

Epworth sleepiness scale

HR

Heart rate

MoCA

Montreal cognitive assessment

OSA

Obstructive sleep apnea

PSG

Polysomnography

PSQI

Pittsburgh sleep quality index

SaO2 nadir

Lowest oxygen saturation rate

∆SaO2

SaO2 baseline–SaO2 nadir

SEI

Sleep-efficiency index

TMT

Trail-making tests

Notes

Acknowledgements

The authors would like to thank Mr. Luke Ehlert, Ms. Karen A. Harada, and Ms. Kelly A. Hickey for their assistance with data collection.

Funding

This research work was supported by National Institutes of Health R01 HL-113251 and R01 NR-015038.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Peppard PE, Young T, Barnet JH, Palta M, Hagen EW, Hla KM. Increased prevalence of sleep-disordered breathing in adults. Am J Epidemiol. 2013;177(9):1006–14.CrossRefGoogle Scholar
  2. 2.
    Lee W, Nagubadi S, Kryger MH, Mokhlesi B. Epidemiology of obstructive sleep apnea: a population-based perspective. Expert Rev Respir Med. 2008;2(3):349–64.CrossRefGoogle Scholar
  3. 3.
    Knauert M, Naik S, Gillespie MB, Kryger M. Clinical consequences and economic costs of untreated obstructive sleep apnea syndrome. World J Otorhinolaryngol Head Neck Surg. 2015;1(1):17–27.CrossRefGoogle Scholar
  4. 4.
    Cook NR, Cohen J, Hebert PR, Taylor JO, Hennekens CH. Implications of small reductions in diastolic blood pressure for primary prevention. Arch Intern Med. 1995;155(7):701–9.CrossRefGoogle Scholar
  5. 5.
    Sasaki N, Ozono R, Edahiro Y, Okita T, Teramen K, Kisaka T, Fujiwara S, Kihara Y. Short-term blood pressure variability in hypertensive patients with obstructive sleep apnea syndrome. Sleep Biol Rhythms. 2014;13(2):117–26.CrossRefGoogle Scholar
  6. 6.
    Shi J, Piao J, Liu B, Pan Y, Gong Y, Deng X, Sun W, Lu S, Li Y. Obstructive sleep apnea increases systolic and diastolic blood pressure variability in hypertensive patients. Blood Press Monit. 2017;22(4):208–12.CrossRefGoogle Scholar
  7. 7.
    Nasilowska-Barud A, Kowalik M. Characteristics of depressive changes and anxiety in patients with essential hypertension. Ann Univ Mariae Curie Sklodowska Med. 2004;59(1):428–33.PubMedGoogle Scholar
  8. 8.
    Dumitrescu A, Dumitrescu DM, Lepadatu D, Molfea VA, Pandele GI. Clinical characteristics of depressive disorders in hypertensive patients. Rev Med Chir Soc Med Nat Iasi. 2009;113(2):386–90.PubMedGoogle Scholar
  9. 9.
    Regestein Q, Natarajan V, Pavlova M, Kawasaki S, Gleason R, Koff E. Sleep debt and depression in female college students. Psychiatry Res. 2010;176(1):34–9.CrossRefGoogle Scholar
  10. 10.
    Slater G, Steier J. Excessive daytime sleepiness in sleep disorders. J Thorac Dis. 2012;4(6):608–16.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Bucks RS, Olaithe M, Eastwood P. Neurocognitive function in obstructive sleep apnoea: a meta-review. Respirology. 2013;18(1):61–70.CrossRefGoogle Scholar
  12. 12.
    Young T, Peppard PE, Taheri S. Excess weight and sleep-disordered breathing. J Appl Physiol. (1985). 2005;99(4):1592–9.CrossRefGoogle Scholar
  13. 13.
    Rajala R, Partinen M, Sane T, Pelkonen R, Huikuri K, Seppalainen AM. Obstructive sleep apnoea syndrome in morbidly obese patients. J Intern Med. 1991;230(2):125–9.CrossRefGoogle Scholar
  14. 14.
    Richman RM, Elliott LM, Burns CM, Bearpark HM, Steinbeck KS, Caterson ID. The prevalence of obstructive sleep apnoea in an obese female population. Int J Obes Relat Metab Disord. 1994;18(3):173–7.PubMedGoogle Scholar
  15. 15.
    Vgontzas AN, Tan TL, Bixler EO, Martin LF, Shubert D, Kales A. Sleep apnea and sleep disruption in obese patients. Arch Intern Med. 1994;154(15):1705–11.CrossRefGoogle Scholar
  16. 16.
    Laaban JP, Cassuto D, Orvoen-Frija E, Iliou MC, Mundler O, Leger D, Oppert JM. Cardiorespiratory consequences of sleep apnoea syndrome in patients with massive obesity. Eur Respir J. 1998;11(1):20–7.CrossRefGoogle Scholar
  17. 17.
    Van Boxem TJ, De Groot GH. Prevalence and severity of sleep disordered breathing in a group of morbidly obese patients. Neth J Med. 1999;54(5):202–6.CrossRefGoogle Scholar
  18. 18.
    Punjabi NM, Sorkin JD, Katzel LI, Goldberg AP, Schwartz AR, Smith PL. Sleep-disordered breathing and insulin resistance in middle-aged and overweight men. Am J Respir Crit Care Med. 2002;165(5):677–82.CrossRefGoogle Scholar
  19. 19.
    Vgontzas AN, Papanicolaou DA, Bixler EO, Hopper K, Lotsikas A, Lin HM, Kales A, Chrousos GP. Sleep apnea and daytime sleepiness and fatigue: relation to visceral obesity, insulin resistance, and hypercytokinemia. J Clin Endocrinol Metab. 2000;85(3):1151–8.CrossRefGoogle Scholar
  20. 20.
    Millman RP, Carlisle CC, Mcgarvey ST, Eveloff SE, Levinson PD. Body fat distribution and sleep apnea severity in women. Chest. 1995;107(2):362–6.CrossRefGoogle Scholar
  21. 21.
    Dancey DR, Hanly PJ, Soong C, Lee B, Shepard J Jr, Hoffstein V. Gender differences in sleep apnea: the role of neck circumference. Chest. 2003;123(5):1544–50.CrossRefGoogle Scholar
  22. 22.
    Kang HH, Kang JY, Ha JH, Lee J, Kim SK, Moon HS, Lee SH. The associations between anthropometric indices and obstructive sleep apnea in a Korean population. PLoS ONE. 2014;9(12):e114463.CrossRefGoogle Scholar
  23. 23.
    Ahbab S, Ataoglu HE, Tuna M, Karasulu L, Cetin F, Temiz LU, Yenigun M. Neck circumference, metabolic syndrome and obstructive sleep apnea syndrome: evaluation of possible linkage. Med Sci Monit. 2013;19:111–7.CrossRefGoogle Scholar
  24. 24.
    Onat A, Hergenc G, Yuksel H, Can G, Ayhan E, Kaya Z, Dursunoglu D. Neck circumference as a measure of central obesity: associations with metabolic syndrome and obstructive sleep apnea syndrome beyond waist circumference. Clin Nutr. 2009;28(1):46–51.CrossRefGoogle Scholar
  25. 25.
    Ho AW, Moul DE, Krishna J. Neck circumference-height ratio as a predictor of sleep related breathing disorder in children and adults. J Clin Sleep Med. 2016;12(3):311–7.CrossRefGoogle Scholar
  26. 26.
    Davidson TM, Patel MR. Waist circumference and sleep disordered breathing. Laryngoscope. 2008;118(2):339–47.CrossRefGoogle Scholar
  27. 27.
    Soylu AC, Levent E, Sariman N, Yurtlu S, Alparslan S, Saygi A. Obstructive sleep apnea syndrome and anthropometric obesity indexes. Sleep Breath. 2012;16(4):1151–8.CrossRefGoogle Scholar
  28. 28.
    Carpenter JS, Andrykowski MA. Psychometric evaluation of the Pittsburgh Sleep Quality Index. J Psychosom Res. 1998;45(1):5–13.CrossRefGoogle Scholar
  29. 29.
    Johns MW. Reliability and factor analysis of the Epworth sleepiness scale. Sleep. 1992;15(4):376–81.CrossRefGoogle Scholar
  30. 30.
    Netzer NC, Stoohs RA, Netzer CM, Clark K, Strohl KP. Using the Berlin questionnaire to identify patients at risk for the sleep apnea syndrome. Ann Intern Med. 1999;131(7):485–91.CrossRefGoogle Scholar
  31. 31.
    Beck AT, Steer RA, Ball R, Ranieri W. Comparison of Beck Depression Inventories-IA and -II in psychiatric outpatients. J Pers Assess. 1996;67(3):588–97.CrossRefGoogle Scholar
  32. 32.
    Beck AT, Epstein N, Brown G, Steer RA. An inventory for measuring clinical anxiety: psychometric properties. J Consult Clin Psychol. 1988;56(6):893–7.CrossRefGoogle Scholar
  33. 33.
    Moses JA Jr. Test review-comprehensive trail making test (CTMT). Arch Clin Neuropsychol. 2004;19(5):703–8.CrossRefGoogle Scholar
  34. 34.
    Tombaugh TN. Trail making test A and B: normative data stratified by age and education. Arch Clin Neuropsychol. 2004;19(2):203–14.CrossRefGoogle Scholar
  35. 35.
    Nasreddine ZS, Phillips NA, Bedirian V, Charbonneau S, Whitehead V, Collin I, Cummings JL, Chertkow H. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53(4):695–9.CrossRefGoogle Scholar
  36. 36.
    Dopp JM, Reichmuth KJ, Morgan BJ. Obstructive sleep apnea and hypertension: mechanisms, evaluation, and management. Curr Hypertens Rep. 2007;9(6):529–34.CrossRefGoogle Scholar
  37. 37.
    Punjabi NM. The epidemiology of adult obstructive sleep apnea. Proc Am Thorac Soc. 2008;5(2):136–43.CrossRefGoogle Scholar
  38. 38.
    Peppard PE, Young T, Palta M, Dempsey J, Skatrud J. Longitudinal study of moderate weight change and sleep-disordered breathing. JAMA. 2000;284(23):3015–21.CrossRefGoogle Scholar
  39. 39.
    Cizza G, De Jonge L, Piaggi P, Mattingly M, Zhao X, Lucassen E, Rother KI, Sumner AE, Csako G, NIDDK Sleep Extension Study. Neck circumference is a predictor of metabolic syndrome and obstructive sleep apnea in short-sleeping obese men and women. Metab Syndr Relat Disord. 2014;12(4):231–41.CrossRefGoogle Scholar
  40. 40.
    Borges PT, Filho ES, Araujo TM, Neto JM, Borges NE, Neto BM, Campelo V, Paschoal JR, Li LM. Correlation of cephalometric and anthropometric measures with obstructive sleep apnea severity. Int Arch Otorhinolaryngol. 2013;17(3):321–8.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Kim JH, Koo YC, Cho HJ, Kang JW. Relationship between various anthropometric measures and apnea-hypopnea index in Korean men. Auris Nasus Larynx. 2017;45(2):295–300.CrossRefGoogle Scholar
  42. 42.
    Franco I, Reis R, Ferreira D, Xara S, Ferreira W, Bettencourt N, Antunes A. The impact of neck and abdominal fat accumulation on the pathogenesis of obstructive sleep apnea. Rev Port Pneumol. (2006). 2016;22(4):240–2.Google Scholar
  43. 43.
    Wu WT, Tsai SS, Shih TS, Lin MH, Chou TC, Ting H, Wu TN, Liou SH. The association between obstructive sleep apnea and metabolic markers and lipid profiles. PLoS ONE. 2015;10(6):e0130279.CrossRefGoogle Scholar
  44. 44.
    Buxton OM, Marcelli E. Short and long sleep are positively associated with obesity, diabetes, hypertension, and cardiovascular disease among adults in the United States. Soc Sci Med. 2010;71(5):1027–36.CrossRefGoogle Scholar
  45. 45.
    Wysocki J, Charuta A, Kowalcze K, Ptaszynska-Sarosiek I. Anthropometric and physiologic assessment in sleep apnoea patients regarding body fat distribution. Folia Morphol (Warsz). 2016;75(3):393–9.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Chloe Tom
    • 1
  • Bhaswati Roy
    • 2
  • Ruchi Vig
    • 1
  • Daniel W. Kang
    • 3
  • Ravi S. Aysola
    • 4
  • Mary A. Woo
    • 2
  • Ronald M. Harper
    • 5
    • 8
  • Rajesh Kumar
    • 1
    • 6
    • 7
    • 8
    Email author
  1. 1.Department of Anesthesiology, David Geffen School of Medicine at UCLAUniversity of California at Los AngelesLos AngelesUSA
  2. 2.UCLA School of NursingUniversity of California at Los AngelesLos AngelesUSA
  3. 3.Department of Medicine, David Geffen School of Medicine at UCLAUniversity of California at Los AngelesLos AngelesUSA
  4. 4.Department of Pulmonary Medicine and Critical Care, David Geffen School of Medicine at UCLAUniversity of California at Los AngelesLos AngelesUSA
  5. 5.Department of Neurobiology, David Geffen School of Medicine at UCLAUniversity of California at Los AngelesLos AngelesUSA
  6. 6.Department of Radiological Sciences, David Geffen School of Medicine at UCLAUniversity of California at Los AngelesLos AngelesUSA
  7. 7.Department of BioengineeringUniversity of California at Los AngelesLos AngelesUSA
  8. 8.Brain Research InstituteUniversity of California at Los AngelesLos AngelesUSA

Personalised recommendations