Advertisement

Thermodynamic study of zirconium carbide synthesis via a low-temperature pyrovacuum method

  • Farzin Arianpour
  • Faramarz Kazemi
  • Hamid Reza RezaieEmail author
Research
  • 8 Downloads

Abstract

In this research, the thermodynamic aspect of the nano-sized zirconium carbide production is investigated via a facile, low-temperature and cost-effective carbothermal method under vacuum and argon atmospheres. The starting materials were zirconium acetate and sucrose as zirconium and carbon precursors, respectively. The gels were prepared based on 3, 4, 5, and 7 molar ratios of carbon to zirconium and heated at 1200 and 1400 °C under vacuum and argon atmospheres. The formation of zirconium carbides under different atmospheres were studied via thermogravimetric analysis and the results were compared. The phase composition and microstructural features were investigated using X-ray diffraction and scanning electron microscopy, respectively. According to the thermogravimetric results and performed thermodynamic calculations, it was revealed that the ZrC formation starts at 1200 °C under vacuum. It is also demonstrated that the formation of nano ZrC powder with crystallite sizes smaller than 30 nm, completely occurs after processing at 1400 °C in vacuum. The measured lattice parameter value of the optimized sample was equal to 4.7003 Å.

Keywords

Zirconium carbide Carbothermal reduction Pyrovacuum Thermo-gravimetry X-ray diffraction 

Notes

References

  1. 1.
    Ushakov, S.V., Navrotsky, A., Hong, Q., Walle, A.: Carbides and nitrides of zirconium and hafnium. Materials. 12, 2728 (2019)CrossRefGoogle Scholar
  2. 2.
    Arianpour, F., Golestanifard, F., Rezaie, H.R., Mazaheri, M., Celik, A., Kara, F., Fantozzi, G.: Processing, phase evaluation and mechanical properties of MoSi2 doped 4TaC-HfC based UHTCs consolidated by spark plasma sintering. Int. J. Refract. Met. Hard Mater. 56, 1–7 (2016)CrossRefGoogle Scholar
  3. 3.
    Zhou, Y., Heitmann, T.W., Fahrenholtz, W.G., Hilmas, G.E.: Synthesis of ZrCx with controlled carbon stoichiometry by low temperature solid state reaction. J. Eur. Ceram. Soc. 39, 2594–2600 (2019)CrossRefGoogle Scholar
  4. 4.
    Kim, J.H., Seo, M.: Influence of lattice strain on grain growth behavior of zirconium carbide. Ceram. Int. 44, 17204–17208 (2018)CrossRefGoogle Scholar
  5. 5.
    Giorgi, E., Grasso, S., Zapata-Solvas, E., Lee, W.E.: Reactive carbothermal reduction of ZrC and ZrOC using spark plasma sintering. Adv. Appl. Ceram. S1, S34–S47 (2018)CrossRefGoogle Scholar
  6. 6.
    Yu, L., Feng, L., Lee, H.I., Silvestroni, L., Sciti, D., Woo, Y.J., Lee, S.H.: Synthesis and densification of ultra-fine ZrC powders-effects of C/Zr ratio. Int. J. Refract. Met. Hard Mater. 81, 149–154 (2019)CrossRefGoogle Scholar
  7. 7.
    Zhang, M.X., Hu, Q.D., Huang, B., Li, J.Z., Li, J.G.: Study of formation behavior of ZrC in the Fe-Zr-C system during combustion synthesis. Int. J. Refract. Met. Hard Mater. 29, 596–600 (2011)CrossRefGoogle Scholar
  8. 8.
    Zhang, M.X., Huanga, B., Hua, Q.D., Lia, J.G.: Study of formation behavior of ZrC in the Cu-Zr-C system during combustion synthesis. Int. J. Refract. Met. Hard Mater. 31, 230–235 (2012)CrossRefGoogle Scholar
  9. 9.
    Li, J., Fu, Z.Y., Wang, W.M., Wang, H., Lee, S.H., Niihara, K.: Preparation of ZrC by self-propagating high-temperature synthesis. Ceram. Int. 36, 1681–1686 (2010)CrossRefGoogle Scholar
  10. 10.
    Hu, Q., Zhang, M., Luo, P., Song, M., Li, J.: Thermal explosion synthesis of ZrC particles and their mechanism of formation from Al-Zr-C elemental powders. Int. J. Refract. Met. Hard Mater. 35, 251–256 (2012)CrossRefGoogle Scholar
  11. 11.
    Nam, Y.S., Cui, X.M., Jeong, L., Lee, J.Y., Park, W.H.: Fabrication and characterization of zirconium carbide (ZrC) nanofibers with thermal storage property. Thin Solid Films. 517, 6531–6538 (2009)CrossRefGoogle Scholar
  12. 12.
    Combemale, L., Leconte, Y., Portier, X., Herlin-Boime, N., Reynaud, C.: Synthesis of nanosized zirconium carbide by laser pyrolysis route. J. Alloy Compound. 483, 468–472 (2009)CrossRefGoogle Scholar
  13. 13.
    Dolle, M., Gosset, D., Bogicevic, C., Karolak, F., Simeone, D., Baldinozzi, G.: Synthesis of nanosized zirconium carbide by a sol-gel route. J. Eur. Ceram. Soc. 27, 2061–2067 (2007)CrossRefGoogle Scholar
  14. 14.
    Zheng, Y., Zheng, Y., Wang, R., Wei, K.: Direct determination of carbothermal reduction temperature for preparing silicon carbide from the vacuum furnace thermobarogram. Vacuum. 82, 336–339 (2008)CrossRefGoogle Scholar
  15. 15.
    Wu, K., Zhang, G., Gou, H., Chou, K.: Preparation and purification of titanium carbide via vacuum carbothermic reduction of ilmenite. Vacuum. 151, 51–60 (2018)CrossRefGoogle Scholar
  16. 16.
    Sen, W., Sun, H., Yang, B., Xu, B., Ma, W., Liu, D., Dai, Y.: Preparation of titanium carbide powders by carbothermal reduction of titania/charcoal at vacuum condition. Int. J. Refract. Met. Hard Mater. 28, 628–632 (2010)CrossRefGoogle Scholar
  17. 17.
    Arianpour, F., Kazemi, F., Rezaie, H.R., Asjodi, A., Liu, J.: Nano zirconium carbide powder synthesis via carbothermal route. Defect Diffus Forum 334, 381–386 (2013)CrossRefGoogle Scholar
  18. 18.
    Sevastyanov, V.G., Simonenko, E.P., Ignatov, N.A., Ezhov, Y.S., Simonenko, N.P., Kuznetsov, N.T.: Synthesis of highly dispersed super-refractory tantalum-zirconium carbide Ta4ZrC5 and tantalum-hafnium carbide Ta4HfC5 via sol-gel technology. Russ. J. Inorg. Chem. 56, 1681–1687 (2011)CrossRefGoogle Scholar
  19. 19.
    Jenkins, R., Snyder, R.: Introduction to X-ray powder diffractometery. 2nd edition. John Wiley & Sons, USA (2012)Google Scholar
  20. 20.
    Saberi, A., Alinejad, B., Negahdari, Z., Kazemi, F., Almasi, A.: A novel method to low temperature synthesis of nanocrystalline forsterite. Mater. Res. Bull. 42, 666–673 (2007)CrossRefGoogle Scholar
  21. 21.
    Ebrahimi-Kahrizsangi, R., Amini-Kahrizsangi, E.: Zirconia carbothermal reduction: Non-isothermal kinetics. Int. J. Refract. Met. Hard Mater. 27, 637–641 (2009)CrossRefGoogle Scholar
  22. 22.
    Berger, L.M., Gruner, W., Langholf, E., Stolle, S.: On the mechanism of carbothermal reduction processes of TiO2 and ZrO2. Int. J. Refract. Met. Hard Mater. 17, 235–243 (1999)CrossRefGoogle Scholar
  23. 23.
    David, J., Trolliard, G., Gendre, M., Maitre, A.: TEM study of the reaction mechanisms involved in the carbothermal reduction of zirconia. J. Eur. Ceram. Soc. 33, 165–179 (2013)CrossRefGoogle Scholar
  24. 24.
    Ang, C., Williams, T., Seeber, A., Wang, H., Cheng, Y.: Synthesis and evolution of zirconium carbide via sol-gel route: features of nanoparticle oxide-carbon reactions. J. Am. Ceram. Soc. 96, 1099–1106 (2013)CrossRefGoogle Scholar
  25. 25.
    Shatynski, S.R.: The thermochemistry of transition metal carbides. Oxid. Met. 13, 105–118 (1979)CrossRefGoogle Scholar
  26. 26.
    Guillermet, A.F.: Analysis of thermochemical properties and phase stability in the zirconium-carbon system. J. Alloys Compound. 217, 69–89 (1995)CrossRefGoogle Scholar
  27. 27.
    Chase, M.W., Curnut, J.L., Downey, J.R., McDonald, R.A., Syverud, A.N., Valenzuela, E.A.: JANAF thermochemical Tables. J. Phys. Chem. Ref. Data. 11, 695–940 (1982)CrossRefGoogle Scholar
  28. 28.
    Gaskell, D.R., Laughlin, D.E.: Introduction to the thermodynamics of materials. 6th ed. CRC Press, New York (2017)Google Scholar
  29. 29.
    Fabris, S., Paxton, A.T., Finnis, M.W.: A stabilization mechanism of zirconia based oxygen vacancies only. Acta Mater. 50, 5171–5178 (2002)CrossRefGoogle Scholar
  30. 30.
    Schönfeld, K., Martin, H.P., Michaelis, A.: Pressureless sintering of ZrC with variable stoichiometry. J Adv Ceram 6, 165–175 (2017)CrossRefGoogle Scholar
  31. 31.
    Chu, A., Qin, M., Rafi-ud-din, Zhang, L., Lu, H., Jia, B., Qu, X.: Carbothermal synthesis of ZrC powders using a combustion synthesis precursor. Int. J. Refract. Met. Hard Mater. 36, 204–210 (2013)CrossRefGoogle Scholar
  32. 32.
    Sacks, M.D., Wang, C., Yang, Z., Jian, A.: Carbothermal reduction synthesis of nanocrystalline zirconium carbide and hafnium carbide powders using solution-derived precursors. J. Mater. Sci. 39, 6057–6066 (2004)CrossRefGoogle Scholar
  33. 33.
    Kelly, J.R., Denry, I.: Stabilized zirconia as a structural ceramic: an overview. Dent Mater 4, 289–298 (2008)CrossRefGoogle Scholar
  34. 34.
    Gendre, M., Maitre, A., Trolliard, G.: Synthesis of zirconium oxycarbide (ZrCxOy) powders: influence of stoichiometry on densification kinetics during spark plasma sintering and on mechanical properties. J. Eur. Ceram. Soc. 31, 2377–2385 (2011)CrossRefGoogle Scholar
  35. 35.
    Feng, L., Lee, S., Lee, H.: Nano-sized zirconium carbide powder: synthesis and densification using a spark plasma sintering apparatus. Int. J. Refract. Met. Hard Mater. 64, 98–105 (2017)CrossRefGoogle Scholar
  36. 36.
    Rejasse, F., Rapaud, O., Trolliard, G., Masson, O., Maitre, A.: Experimental investigation and thermodynamic evaluation of the C-O-Zr ternary system. RSC Adv. 106, 1–30 (2016)Google Scholar

Copyright information

© Australian Ceramic Society 2019

Authors and Affiliations

  • Farzin Arianpour
    • 1
  • Faramarz Kazemi
    • 2
  • Hamid Reza Rezaie
    • 3
    Email author
  1. 1.Research and Application CenterKastamonu UniversityKastamonuTurkey
  2. 2.Department of Mining and MetallurgyAmirkabir University of TechnologyTehranIran
  3. 3.School of Metallurgy and Materials EngineeringIran University of Science and TechnologyTehranIran

Personalised recommendations