Studies on dielectric and magnetic properties of CaCu3Ti3MnO12 ceramic synthesized via semi-wet route

  • Santosh Pandey
  • Atendra Kumar
  • N. B. Singh
  • K. D. MandalEmail author


CaCu3Ti3MnO12 (CCTMO) ceramic has been successfully synthesized by the semi-wet route and sintered at 1223 K for 8 h, which is confirmed by XRD analysis to ensure CaCu3Ti3MnO12 (CCTMO) phase formation. The microstructure, phase-structure, and thermal behavior were examined by scanning electron microscopy (SEM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA), respectively. After Mn-doping, the dielectric constant decreases from 104 to 102. The particle size as well as grain size measured by TEM and SEM techniques which were found to be 43.76 ± 10 nm and 1.46 μm, respectively. The route mean square and average roughness observed by atomic force microscope (AFM) analysis were 0.141 μm and 0.109 μm, respectively. The temperature-dependent ferromagnetic nature of CCTMO ceramic was confirmed by zero field cooled (ZFC), field cooled (FC), and M-H hysteresis curves. The investigated magnetic property of CCTMO confirmed paramagnetic behavior at 300 K and ferromagnetic behavior at 5 K. The dielectric constant (ɛr) increases when temperature increases, although dielectric constant and dielectric loss were observed 100 and 0.1, respectively.


Semi-wet route Dielectric properties Magnetic properties 



The author would like to thank in-charge of central instrument facility centre (CIFC), IIT (BHU) Varanasi for SEM, TEM, AFM, and MPMS facilities.

Funding information

One of the authors Santosh Pandey received financial support for teaching assistantship from IIT (BHU).


  1. 1.
    Bochu, B., Deschizeaux, M.N., Joubert, J.C., Collomb, A., Chenavas, J., Marezio, M.: Synthèse et caractérisation d'une série de titanates perovskites isotypes de [CaCu3](Mn4) O12. J. Solid State Chem. 29(2), 291–298 (1979)CrossRefGoogle Scholar
  2. 2.
    Windlass, H., Raj, P.M., Balaraman, D., Bhattacharya, S.K., Tummala, R.R.: Colloidal processing of polymer ceramic nanocomposite integral capacitors. IEEE Trans. Adv. Packag. 26, 100–105 (2003)CrossRefGoogle Scholar
  3. 3.
    Li, J., Subramanian, M.A., Rosenfeld, H.D., Jones, C.Y., Toby, B.H., Sleight, A.W.: Clues to the giant dielectric constant of CaCu3Ti4O12 in the defect structure of SrCu3Ti4O12. Chem. Mater. 16(25), 5223–5225 (2004)CrossRefGoogle Scholar
  4. 4.
    Ramirez, A.P., Subramanian, M.A., Gardel, M., Blumberg, G., Li, D., Vogt, T., Shapiro, S.M.: Giant dielectric constant response in a copper-titanate. Solid State Commun. 115(5), 217–220 (2000)CrossRefGoogle Scholar
  5. 5.
    Huang, Y., Shi, D., Li, Y., Li, G., Wang, Q., Liu, L., Fang, L.: Effect of holding time on the dielectric properties and non-ohmic behaviour of CaCu3 Ti4O12 capacitor-varistors. J. Mater. Sci. Mater. Electron. 24(6), 1994–1999 (2013)CrossRefGoogle Scholar
  6. 6.
    Ouyang, X., Habib, M., Cao, P., Wei, S., Huang, Z., Zhang, W., Gao, W.: Enhanced extrinsic dielectric response of TiO2 modified CaCu3Ti4O12ceramics. Ceram. Int. 41(10), 13447–13454 (2015)CrossRefGoogle Scholar
  7. 7.
    Shay, D.P., Podraza, N.J., Donnelly, N.J., Randall, C.A.: High energy density, high temperature capacitors utilizing Mn-doped 0.8CaTiO3–0.2CaHfO3 ceramics. J. Am. Ceram. Soc. 95(4), 1348–1355 (2012)CrossRefGoogle Scholar
  8. 8.
    West, D.L., Payne, D.A.: Microstructure Development in Reactive-Templated Grain Growth of Bi1/2Na1/2TiO3-Based Ceramics: Template and Formulation Effects. J. Am. Ceram. Soc. 86(5), 769–774 (2003)CrossRefGoogle Scholar
  9. 9.
    Adams, T.B., Sinclair, D.C., West, A.R.: Characterization of grain boundary impedances in fine-and coarse-grained CaCu3Ti4O12 ceramics. Phys. Rev. B. 73(9), 094124 (2006)CrossRefGoogle Scholar
  10. 10.
    Subramanian, M.A., Li, D., Duan, N., Reisner, B.A., Sleight, A.W.: High dielectric constant in ACu3Ti4O12 and ACu3Ti3FeO12 phases. J. Solid State Chem. 151(2), 323–325 (2000)CrossRefGoogle Scholar
  11. 11.
    Singh, L., Sin, B.C., Kim, I.W., Mandal, K.D., Chung, H., Lee, Y.A.: A novel one-step flame synthesis method for tungsten-doped CCTO. J. Am. Ceram. Soc. 99(1), 27–34 (2016)CrossRefGoogle Scholar
  12. 12.
    Li, M., Feteira, A., Sinclair, D.C., West, A.R.: Influence of Mn doping on the semiconducting properties of CaCu3Ti4O12 ceramics. Appl. Phys. Lett. 88(23), 232903 (2000)CrossRefGoogle Scholar
  13. 13.
    Sinclair, D.C., Adams, T.B., Morrison, F.D., West, A.R.: CaCu3Ti4O12 one-step internal barrier layer capacitor. Appl. Phys. Lett. 80(12), 2153–2155 (2000)CrossRefGoogle Scholar
  14. 14.
    Li, W., Schwartz, R.W.: ac conductivity relaxation processes in CaCu3Ti4O12 ceramics: Grain boundary and domain boundary effects. Appl. Phys. Lett. 89(24), 242906 (2006)CrossRefGoogle Scholar
  15. 15.
    Wu, L., Zhu, Y., Par, S., Shapiro, S., Shirane, G., Tafto, J.: Defect structure of the high-dielectric-constant perovskite CaCu3Ti4O12. Phys. Rev. B. 71(1), 014118 (2005)CrossRefGoogle Scholar
  16. 16.
    Xu, D., He, K., Yu, R., Sun, X., Yang, Y., Xu, H., Yuan, H., Ma, J.: High dielectric permittivity and low dielectric loss in sol-gel derived Zn doped CaCu3Ti4O12 thin films. Mater. Chem. Phys. 153, 229–235 (2015)CrossRefGoogle Scholar
  17. 17.
    Cho, A., Han, C.S., Kang, M., Choi, W., Lee, J., Jeon, J., Yu, S., Jung, Y.S., Cho, Y.S.: Direct Correlations of Grain-Boundary Potentials to Chemical States and Dielectric Properties of Doped CaCu3Ti4O12 Thin Films. ACS Appl. Mater. Interfaces. 10(18), 16203–16209 (2018)CrossRefGoogle Scholar
  18. 18.
    Chung, S.Y., Kim, I.D., Kang, S.J.: Strong nonlinear current–voltage behaviour in perovskite-derivative calcium copper titanate. Nat. Mater. 3(11), 774 (2004)CrossRefGoogle Scholar
  19. 19.
    Fang, T.T., Shiau, H.K.: Mechanism for developing the boundary barrier layers of CaCu3Ti4O12. J. Am. Ceram. Soc. 87(11), 2072–2079 (2004)CrossRefGoogle Scholar
  20. 20.
    Kim, C.H., Jang, Y.H., Seo, S.J., Song, C.H., Son, J.Y., Yang, Y.S., Cho, J.H.: Effect of Mn doping on the temperature-dependent anomalous giant dielectric behaviour of CaCu3Ti4O12. Phys. Rev. B. 85(24), 245210 (2012)CrossRefGoogle Scholar
  21. 21.
    Thongbai, P., Pinitsoontorn, S., Amornkitbamrung, V., Yamwong, T., Maensiri, S., Chindaprasirt, P.: Reducing loss tangent by controlling microstructure and electrical responses in CaCu3Ti4O12 ceramics prepared by a simple combustion method. Int. J. Appl. Ceram. Technol. 10, E77–E87 (2013)CrossRefGoogle Scholar
  22. 22.
    Lin, Y.H., Cai, J., Li, M., Nan, C.W., He, J.: High dielectric and nonlinear electrical behaviors in TiO2 -rich Ca Cu3Ti4O12 ceramics. Appl. Phys. Lett. 88(17), 172902 (2006)CrossRefGoogle Scholar
  23. 23.
    Khare, A., Yadava, S.S., Mandal, K.D., Mukhopadhyay, N.K.: Effect of sintering duration on the dielectric properties of 0.9 BaTiO3–0.1 CaCu3Ti4O12 nanocomposite synthesized by solid state route. Microelectron. Eng. 164, 1–6 (2016)CrossRefGoogle Scholar
  24. 24.
    Kim, H.E., Choi, S.M., Hong, Y.W.: Improved dielectric properties of the CaCu3Ti4O12 composites using BaTiO3-coated powder as precursor. J. Alloys Compd. 610, 594–599 (2014)CrossRefGoogle Scholar
  25. 25.
    Gautam, P., Khare, A., Sharma, S., Singh, N.B., Mandal, K.D.: Characterization of Bi2/3Cu3Ti4O12 ceramics synthesized by semi-wet route. Pro. Nat. Sci-Mater. 26(6), 567–571 (2016)CrossRefGoogle Scholar
  26. 26.
    Wu, X., Huang, K., Yuan, L., Feng, S.: Fabrication of ultralong perovskite structure nanotubes. RSC Adv. 8(1), 367–373 (2018)CrossRefGoogle Scholar
  27. 27.
    George, M., Nair, S.S., Malini, K.A., Joy, P.A., Anantharaman, M.R.: Finite size effects on the electrical properties of sol–gel synthesized CoFe2O4 powders: deviation from Maxwell–Wagner theory and evidence of surface polarization effects. J. Phys. D. Appl. Phys. 40(6), 1593 (2007)CrossRefGoogle Scholar
  28. 28.
    Jia, R., Zhao, X., Li, J., Tang, X.: Colossal breakdown electric field and dielectric response of Al-doped CaCu3Ti4O12 ceramics. Mater. Sci. Eng. B. 185, 79–85 (2014)CrossRefGoogle Scholar
  29. 29.
    Sun, D.L., Wu, A.Y., Yin, S.T.: Structure, properties, and impedance spectroscopy of CaCu3Ti4O12 ceramics prepared by sol–gel process. J. Am. Ceram. Soc. 91(1), 169–173 (2008)CrossRefGoogle Scholar
  30. 30.
    Mo, Z.J., Shen, J., Gao, X.Q., Liu, Y., Wu, J.F., Shen, B.G., Sun, J.R.: Magnetic properties and magnetocaloric effects in HoPd intermetallic. Chinese. Phys B. 24(3), 037503 (2015)CrossRefGoogle Scholar
  31. 31.
    Han, D., Wu, Z., Wang, Z., Yang, S.: Oriented Mn-doped CuO nanowire arrays. Nanotechnology. 27(13), 135603 (2012)CrossRefGoogle Scholar
  32. 32.
    Yadava, S.S., Singh, L., Sharma, S., Mandal, K.D., Singh, N.B.: Effect of temperature on the dielectric and ferroelectric properties of a nanocrystalline hexagonal Ba4YMn 3O11.5− δ ceramic synthesized by a chemical route. RSC Adv. 6(72), 68247–68253 (2016)CrossRefGoogle Scholar

Copyright information

© Australian Ceramic Society 2019

Authors and Affiliations

  • Santosh Pandey
    • 1
  • Atendra Kumar
    • 1
  • N. B. Singh
    • 2
  • K. D. Mandal
    • 1
    Email author
  1. 1.Department of ChemistryIndian Institute of Technology (BHU)VaranasiIndia
  2. 2.Department of chemistry and biochemistryUniversity of Maryland Baltimore CountyBaltimoreUSA

Personalised recommendations