Effects of electrophoretic parameters on chitosan-based nanocomposite coatings

  • A. Molaei
  • Lashgaroo M. 
  • M. YousefpourEmail author


This paper presents the research work carried out in the electrophoretic deposition (EPD) of the chitosan (CS)–based nanocomposite coatings containing bioglass (BG), hydroxyapatite (HA), and halloysite nanotube (HNT) on the titanium (Ti) substrate. The focus was in understanding the effect of process parameters, like the insulation process of electrodes, cathode to anode surface area ratio, applied voltage, and deposition time. Insulated electrodes with a lower cathode to anode surface area ratio were led to more deposition mass. Enhancement of electrophoresis voltage and deposition time achieved more heterogeneous morphology and lower density. The comprehensive mechanism of the CS-based EPD studied the effect of process parameters was exhibited. By the variation of deposition time (0–25 min), the deposition weight (0–3.5 mg/cm2) and thickness changed (0–45 μm). Polarization and impedance analyses indicated that applying a medium voltage led to the formation of a great anti-corrosive coating.


Electrophoretic deposition Voltage Deposition time Nanocomposite coating Corrosion 



  1. 1.
    Fukada, Y., Nagarajan, N., Mekky, W., Bao, Y., Kim, H.S., Nicholson, P.S.: Electrophoretic deposition-mechanisms, myths and materials. J. Mater. Sci. 39, 787–801 (2004)CrossRefGoogle Scholar
  2. 2.
    Laxmidhar, B., Meilin, L.: A review on fundamentals and applications of electrophoretic deposition (EPD). Prog. Mater. Sci. 52, 1–61 (2007)CrossRefGoogle Scholar
  3. 3.
    Trzaskowska, P.A., Poniatowska, A., Trzaskowski, M., Latocha, J., Ozga, P., Major, R., Ciach, T.: Lecithin suspensions for electrophoretic deposition on stainless steel coatings. Mater. Sci. Eng. C. 93, 134–144 (2018)CrossRefGoogle Scholar
  4. 4.
    Boccaccini, A.R.: Electrophoretic deposition: fundamentals and applications in materials science. J. Mater. Sci. 7, S581–S613 (2006)Google Scholar
  5. 5.
    Ammam, M.: Electrophoretic deposition under modulated electric fields: a review. RSC Adv. 2, 7633–7646 (2012)CrossRefGoogle Scholar
  6. 6.
    Molaei, A., Yousefpour, M.A.: Electrophoretic deposition of chitosan-bioglass®-hydroxyapatite-halloysite nanotube composite coating. Rare Met. 1-8 (2017).Google Scholar
  7. 7.
    Mehdipour, M., Afshar, A.: A study of the electrophoretic deposition of bioactive glass-chitosan composite coating. Ceram. Int. 38, 471–476 (2012)CrossRefGoogle Scholar
  8. 8.
    Zhang, J., Dai, C.H., Wei, J., Wen, Z.H.: Study on the bonding strength between calcium phosphate/chitosan composite coatings and a Mg alloy substrate. Appl. Surf. Sci. 261, 276–286 (2012)CrossRefGoogle Scholar
  9. 9.
    Molaei, A., Yari, M., Afshar, M.R.: Investigation of halloysite nanotube content on electrophoretic deposition (EPD) of chitosan-bioglass-hydroxyapatite-halloysite nanotube nanocomposites films in surface engineering. Appl. Clay Sci. 135, 75–81 (2016)CrossRefGoogle Scholar
  10. 10.
    Molaei, A., Yari, M., Afshar, M.R.: Modification of electrophoretic deposition of chitosan-bioactive glass-hydroxyapatite nanocomposite coatings for orthopedic applications by changing voltage and deposition time. Ceram. Int. 41, 14537–14544 (2015)CrossRefGoogle Scholar
  11. 11.
    Molaei, A., Amadeh, A., Yari, M., Afshar, M.R.: Structure, apatite inducing ability, and corrosion behavior of chitosan/halloysite nanotube coatings prepared by electrophoretic deposition on titanium substrate. Mater. Sci. Eng. C. 59, 740–747 (2016)CrossRefGoogle Scholar
  12. 12.
    Cao, X., Wang, J., Liu, M., Chen, Y., Cao, Y., Yu, X.: Chitosan-collagen/organomontmorillonite scaffold for bone tissue engineering. Front. Mater. Sci. 9, 405–412 (2015)CrossRefGoogle Scholar
  13. 13.
    Chandran, R., Chevva, H., Zeng, Z., Liu, Y., Zhang, W., Wei, J., Lajeunesse, D.: Solid-state synthesis of silver nanowires using biopolymer thin film. Materials Today Nano. 1, 22–28 (2018)CrossRefGoogle Scholar
  14. 14.
    Hench, L.L.: The story of Bioglass. J. Mater. Sci. Mater. Med. 17, 78–967 (2006)CrossRefGoogle Scholar
  15. 15.
    Xynos, I.D., Hukkanen, M.V.J., Batten, J.J.: Bioglass® 45S5 stimulates osteoblast turnover and enhances bone formation in vitro: implications and applications for bone tissue engineering. Calcif. Tissue Int. 67, 9–321 (2014)Google Scholar
  16. 16.
    Kaczmarek, B., Sionkowska, A., Gołyńsk, M., Polkowska, I., Szponder, T., Nehrbass, D., Osyczka, A.M.: In vivo study on scaffolds based on chitosan, collagen, and hyaluronic acid with hydroxyapatite. Int. J. Biol. Macromol. 118, 938–944 (2018)CrossRefGoogle Scholar
  17. 17.
    Wang, J., Gong, X., Hai, J., Li, T.: Synthesis of silverehydroxyapatite composite with improved antibacterial properties. Vacuum. 152, 132–137 (2018)CrossRefGoogle Scholar
  18. 18.
    Molaei, A., Yousefpour, M.A.: Electrophoretic deposition of nanobiocomposites for orthopedic applications: influence of contained water in suspension. Prot. Met. Phys. 55, 302–309 (2019)Google Scholar
  19. 19.
    Naghib, S.M., Ansari, M., Pedram, A., Moztarzadeh, F., Mozafari, M.: Bioactivation of 304 stainless steel surface through Bioglass 45S5 coating for biomedical applications. Int. J. Electrochem. Sci. 7, 2890–2903 (2012)Google Scholar
  20. 20.
    Kokubo, T., Takadama, H.: How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 27, 2907–2915 (2012)CrossRefGoogle Scholar
  21. 21.
    Paluszkiewicz, C., Stodolak, E., Hasik, M., Blazewicz, M.: FT-IR study of montmorillonite-chitosan nanocomposite materials. Spectrochim Acta Part A Mol. Biomol. Spectrosc. 79, 784–788 (2011)CrossRefGoogle Scholar

Copyright information

© Australian Ceramic Society 2019

Authors and Affiliations

  1. 1.Department of Materials Engineering, Tehran Science and Research BranchIslamic Azad UniversityTehranIran
  2. 2.Department of mechanical engineeringTechnical and Vocational University of SemnanSemnanIran
  3. 3.Faculty of Materials and Metallurgical EngineeringSemnan UniversitySemnanIran

Personalised recommendations