Effects of electrophoretic parameters on chitosan-based nanocomposite coatings
- 13 Downloads
Abstract
This paper presents the research work carried out in the electrophoretic deposition (EPD) of the chitosan (CS)–based nanocomposite coatings containing bioglass (BG), hydroxyapatite (HA), and halloysite nanotube (HNT) on the titanium (Ti) substrate. The focus was in understanding the effect of process parameters, like the insulation process of electrodes, cathode to anode surface area ratio, applied voltage, and deposition time. Insulated electrodes with a lower cathode to anode surface area ratio were led to more deposition mass. Enhancement of electrophoresis voltage and deposition time achieved more heterogeneous morphology and lower density. The comprehensive mechanism of the CS-based EPD studied the effect of process parameters was exhibited. By the variation of deposition time (0–25 min), the deposition weight (0–3.5 mg/cm2) and thickness changed (0–45 μm). Polarization and impedance analyses indicated that applying a medium voltage led to the formation of a great anti-corrosive coating.
Keywords
Electrophoretic deposition Voltage Deposition time Nanocomposite coating CorrosionNotes
References
- 1.Fukada, Y., Nagarajan, N., Mekky, W., Bao, Y., Kim, H.S., Nicholson, P.S.: Electrophoretic deposition-mechanisms, myths and materials. J. Mater. Sci. 39, 787–801 (2004)CrossRefGoogle Scholar
- 2.Laxmidhar, B., Meilin, L.: A review on fundamentals and applications of electrophoretic deposition (EPD). Prog. Mater. Sci. 52, 1–61 (2007)CrossRefGoogle Scholar
- 3.Trzaskowska, P.A., Poniatowska, A., Trzaskowski, M., Latocha, J., Ozga, P., Major, R., Ciach, T.: Lecithin suspensions for electrophoretic deposition on stainless steel coatings. Mater. Sci. Eng. C. 93, 134–144 (2018)CrossRefGoogle Scholar
- 4.Boccaccini, A.R.: Electrophoretic deposition: fundamentals and applications in materials science. J. Mater. Sci. 7, S581–S613 (2006)Google Scholar
- 5.Ammam, M.: Electrophoretic deposition under modulated electric fields: a review. RSC Adv. 2, 7633–7646 (2012)CrossRefGoogle Scholar
- 6.Molaei, A., Yousefpour, M.A.: Electrophoretic deposition of chitosan-bioglass®-hydroxyapatite-halloysite nanotube composite coating. Rare Met. 1-8 (2017).Google Scholar
- 7.Mehdipour, M., Afshar, A.: A study of the electrophoretic deposition of bioactive glass-chitosan composite coating. Ceram. Int. 38, 471–476 (2012)CrossRefGoogle Scholar
- 8.Zhang, J., Dai, C.H., Wei, J., Wen, Z.H.: Study on the bonding strength between calcium phosphate/chitosan composite coatings and a Mg alloy substrate. Appl. Surf. Sci. 261, 276–286 (2012)CrossRefGoogle Scholar
- 9.Molaei, A., Yari, M., Afshar, M.R.: Investigation of halloysite nanotube content on electrophoretic deposition (EPD) of chitosan-bioglass-hydroxyapatite-halloysite nanotube nanocomposites films in surface engineering. Appl. Clay Sci. 135, 75–81 (2016)CrossRefGoogle Scholar
- 10.Molaei, A., Yari, M., Afshar, M.R.: Modification of electrophoretic deposition of chitosan-bioactive glass-hydroxyapatite nanocomposite coatings for orthopedic applications by changing voltage and deposition time. Ceram. Int. 41, 14537–14544 (2015)CrossRefGoogle Scholar
- 11.Molaei, A., Amadeh, A., Yari, M., Afshar, M.R.: Structure, apatite inducing ability, and corrosion behavior of chitosan/halloysite nanotube coatings prepared by electrophoretic deposition on titanium substrate. Mater. Sci. Eng. C. 59, 740–747 (2016)CrossRefGoogle Scholar
- 12.Cao, X., Wang, J., Liu, M., Chen, Y., Cao, Y., Yu, X.: Chitosan-collagen/organomontmorillonite scaffold for bone tissue engineering. Front. Mater. Sci. 9, 405–412 (2015)CrossRefGoogle Scholar
- 13.Chandran, R., Chevva, H., Zeng, Z., Liu, Y., Zhang, W., Wei, J., Lajeunesse, D.: Solid-state synthesis of silver nanowires using biopolymer thin film. Materials Today Nano. 1, 22–28 (2018)CrossRefGoogle Scholar
- 14.Hench, L.L.: The story of Bioglass. J. Mater. Sci. Mater. Med. 17, 78–967 (2006)CrossRefGoogle Scholar
- 15.Xynos, I.D., Hukkanen, M.V.J., Batten, J.J.: Bioglass® 45S5 stimulates osteoblast turnover and enhances bone formation in vitro: implications and applications for bone tissue engineering. Calcif. Tissue Int. 67, 9–321 (2014)Google Scholar
- 16.Kaczmarek, B., Sionkowska, A., Gołyńsk, M., Polkowska, I., Szponder, T., Nehrbass, D., Osyczka, A.M.: In vivo study on scaffolds based on chitosan, collagen, and hyaluronic acid with hydroxyapatite. Int. J. Biol. Macromol. 118, 938–944 (2018)CrossRefGoogle Scholar
- 17.Wang, J., Gong, X., Hai, J., Li, T.: Synthesis of silverehydroxyapatite composite with improved antibacterial properties. Vacuum. 152, 132–137 (2018)CrossRefGoogle Scholar
- 18.Molaei, A., Yousefpour, M.A.: Electrophoretic deposition of nanobiocomposites for orthopedic applications: influence of contained water in suspension. Prot. Met. Phys. 55, 302–309 (2019)Google Scholar
- 19.Naghib, S.M., Ansari, M., Pedram, A., Moztarzadeh, F., Mozafari, M.: Bioactivation of 304 stainless steel surface through Bioglass 45S5 coating for biomedical applications. Int. J. Electrochem. Sci. 7, 2890–2903 (2012)Google Scholar
- 20.Kokubo, T., Takadama, H.: How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 27, 2907–2915 (2012)CrossRefGoogle Scholar
- 21.Paluszkiewicz, C., Stodolak, E., Hasik, M., Blazewicz, M.: FT-IR study of montmorillonite-chitosan nanocomposite materials. Spectrochim Acta Part A Mol. Biomol. Spectrosc. 79, 784–788 (2011)CrossRefGoogle Scholar