Advertisement

Preparation, crystallization features and electro-magnetic properties of phosphate based glass-ceramics as solid electrolyte for lithium-ion batteries

  • Hany A. Abo-MosallamEmail author
  • M. M. Farag
Research
  • 30 Downloads

Abstract

In the present study, the effect of Fe2O3/Al2O3 replacement on the crystallization characteristics of lithium aluminum phosphate glasses with a new composition of 12Li2O–(18–X) Al2O3–X Fe2O3–70 P2O5 (X = 0, 9 and 18 mol%) was investigated. The strength of glasses structure were decreased with incorporation of iron into the glass network instead of aluminum; this is evident from reduce the glass transition temperature, Tg, of the specimens. X-ray diffraction patterns evidenced the formation of Al(PO3)3, ALPO4, (Al0.5, Fe0.5)(PO3)3, and LiFe(P3O9) phases after the controlled heat-treatment process. It also showed that the Al(PO3)3 crystal structure can accept considerable amount of iron to form aluminum iron metaphosphate solid solution. A significant decrease in the grain microstructure of the glass-ceramics was observed as Al2O3 replaced by Fe2O3in the glasses. The magnetic properties of the prepared glass-ceramics were determined at the room temperature by using vibrating sample magnetometer (VSM). The magnetic hysteresis loops of the crystallized glasses have paramagnetic behavior, and their magnetic parameters were dramatically improved by adding of Fe2O3 instead of Al2O3. The evolution of electrical properties in glass-ceramic as a function of Fe2O3/Al2O3 ratio was correlated with the type and size of the phases formed. The substitution of Al2O3 by Fe2O3 resulted in improving the conductivity of the glass-ceramics. The results gave excellent indications for use the prepared glass-ceramic as solid electrolyte materials.

Keywords

Glass-ceramic Crystallization Phosphate Hysteresis Conductivity 

Notes

References

  1. 1.
    Gao, Z., Sun, H., Fu, L., Ye, F., Zhang, Y., Luo, W., et al.: Promises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries. Adv. Mater. 30, 1705702 (2018)CrossRefGoogle Scholar
  2. 2.
    Deubener, J., Allix, M., Davis, M., Duran, A., Höche, T., Honma, T., et al.: Updated definition of glass-ceramics. J. Non-Cryst. Solids. 501, 3–10 (2018)CrossRefGoogle Scholar
  3. 3.
    Le Bourhis, E.: Glass rheology. Glass: mechanics and technology, pp. 83–134. Wiley-VCH Verlag GmbH & Co KGaA, Weinheim (2008)Google Scholar
  4. 4.
    Holand, W., Beall, G.H.: Glass ceramic technology. Wiley (2012)Google Scholar
  5. 5.
    Pavić, L., Graca, M.P., Skoko, Ž., Moguš-Milanković, A., Valente, M.A.: Magnetic properties of iron phosphate glass and glass-ceramics. J. Am. Ceram. Soc. 97, 2517–2524 (2014)CrossRefGoogle Scholar
  6. 6.
    Stefanovsky, S., Stefanovsky, O., Danilov, S., Kadyko, M.: Phosphate-based glasses and glass ceramics for immobilization of lanthanides and actinides. Ceram. Int. 2018,Google Scholar
  7. 7.
    Nitta, N., Wu, F., Lee, J.T., Yushin, G.: Li-ion battery materials: present and future. Mater. Today. 18, 252–264 (2015)CrossRefGoogle Scholar
  8. 8.
    Cruz, A.M., Ferreira, E.B., Rodrigues, A.C.M.: Controlled crystallization and ionic conductivity of a nanostructured LiAlGePO4 glass–ceramic. J. Non-Cryst. Solids. 355, 2295–2301 (2009)CrossRefGoogle Scholar
  9. 9.
    Zhang, J., Luo, Z., Zhang, Y., Qin, C., Liang, H., Lu, A.: Controllable preparation and high ionic conductivity of Fe2O3-doped 46Li2O-4Al2O3-50P2O5 glass-ceramics. J. Non-Cryst. Solids. 500, 401–409 (2018)CrossRefGoogle Scholar
  10. 10.
    Kun, H., Yanhang, W., Chengkui, Z., Huifeng, Z., Yonghua, L., Jiang, C., et al.: Influence of Al2O3 additions on crystallization mechanism and conductivity of Li2O–Ge2O–P2O5 glass–ceramics. Phys. B Condens. Matter. 406, 3947–3950 (2011)CrossRefGoogle Scholar
  11. 11.
    Zhu, Y., Zhang, Y., Lu, L.: Influence of crystallization temperature on ionic conductivity of lithium aluminum germanium phosphate glass-ceramic. J. Power Sources. 290, 123–129 (2015)CrossRefGoogle Scholar
  12. 12.
    Luo, Z., Lu, A., Liu, T., Song, J., Han, G.: La2O3 substitution in Li-Al-PON glasses for potential solid electrolytes applications. Solid State Ionics. 295, 104–110 (2016)CrossRefGoogle Scholar
  13. 13.
    Mohaghegh, E., Nemati, A., Yekta, B.E., Banijamali, S.: Effects of Fe2O3 content on ionic conductivity of Li2O-TiO2-P2O5 glasses and glass-ceramics. Mater. Chem. Phys. 190, 8–16 (2017)CrossRefGoogle Scholar
  14. 14.
    Luo, Z., Zhang, J., Liu, J., Song, J., Lu, A.: La2O3-added lithium-ion conducting silicate oxynitride glasses. Solid State Ionics. 317, 76–82 (2018)CrossRefGoogle Scholar
  15. 15.
    Muller, D., Berger, G., Grunze, I., Ladwig, G., Hallas, E., Haubenreisser, U.: Influence of aluminum ions on fluorescent spectra and upconversion in codoped CaF2–Al2O3–P2O5–SiO2: Ho3+ and Er3+ glass system. Phys. Chem. Glasses. 24, 37–45 (1983)Google Scholar
  16. 16.
    Pershina, S., Raskovalov, A., Antonov, B., Yaroslavtseva, T., Reznitskikh, O., Baklanova, Y.V., et al.: Extreme behavior of Li-ion conductivity in the Li2O–Al2O3–P2O5 glass system. J. Non-Cryst. Solids. 430, 64–72 (2015)CrossRefGoogle Scholar
  17. 17.
    Karabulut, M., Marasinghe, G., Ray, C.S., Day, D., Waddill, G., Booth, C., et al.: An investigation of the local iron environment in iron phosphate glasses having different Fe (II) concentrations. J. Non-Cryst. Solids. 306, 182–192 (2002)CrossRefGoogle Scholar
  18. 18.
    Reis, S., Moguš-Milanković, A., Ličina, V., Yang, J., Karabulut, M., Day, D., et al.: Iron redox equilibrium, structure and properties of zinc iron phosphate glasses. J. Non-Cryst. Solids. 353, 151–158 (2007)CrossRefGoogle Scholar
  19. 19.
    Togashi, T., Honma, T., Shinozaki, K., Komatsu, T.: Electrochemical performance as cathode of lithium iron silicate, borate and phosphate glasses with different Fe2+ fractions. J. Non-Cryst. Solids. 436, 51–57 (2016)CrossRefGoogle Scholar
  20. 20.
    Nagamine, K., Reinsch, S., Mueller, R., Honma, T., Komatsu, T.: Crystallization behavior of lithium iron phosphate glass powders in different atmospheres. J. Am. Ceram. Soc. 94, 2890–2895 (2011)CrossRefGoogle Scholar
  21. 21.
    Yang RJ, Wang YH, Liu SQ. The crystallization of lithium-iron-phosphate glasses containing alkali and alkali-earth metal oxides. Key Engineering Materials: Trans Tech Publ; 2015. p. 69–72Google Scholar
  22. 22.
    Megahed, A.: Density of mixed alkali silicate glasses. Phys. Chem. Glasses. 40, 130–134 (1999)Google Scholar
  23. 23.
    Doweidar, H., El-Egili, K., Ramadan, R., Al-Zaibani, M.: Structural units distribution, phase separation and properties of PbO–TiO2–B2O3 glasses. J. Non-Cryst. Solids. 466, 37–44 (2017)CrossRefGoogle Scholar
  24. 24.
    Deshkar, A., Ahmadzadeh, M., Scrimshire, A., Han, E., Bingham, P., Guillen, D., et al.: Crystallization behavior of iron-and boron-containing nepheline (Na2 O● Al2 O3● 2SiO2) based glasses: implications on the chemical durability of high-level nuclear waste glasses. J. Am. Ceram. Soc. 102, 1101–1121 (2019)CrossRefGoogle Scholar
  25. 25.
    Langlet, M., Saltzberg, M., Shannon, R.: Aluminium metaphosphate glass-ceramics. J. Mater. Sci. 27, 972–982 (1992)CrossRefGoogle Scholar
  26. 26.
    Nan, Y., Lee, W.E., James, P.F.: Crystallization behavior of CaO–P2O5 glass with TiO2, SiO2, and Al2O3 additions. J. Am. Ceram. Soc. 75, 1641–1647 (1992)CrossRefGoogle Scholar
  27. 27.
    Holloway, J.A., Denry, I.: Effect of aluminum phosphate additions on the crystallization and bioactivity of fluororichterite glass–ceramics for biomedical applications. J. Am. Ceram. Soc. 90, 2941–2946 (2007)CrossRefGoogle Scholar
  28. 28.
    Stefanovsky, S., Stefanovskaya, O., Vinokurov, S., Danilov, S., Myasoedov, B.: Phase composition, structure, and hydrolytic durability of glasses in the Na 2 O-Al 2 O 3-(Fe 2 O 3)-P 2 O 5 system at replacement of Al 2 O 3 by Fe 2 O 3. Radiochemistry. 57, 348–355 (2015)CrossRefGoogle Scholar
  29. 29.
    Metwalli, E., Brow, R.K., Stover, F.S.: Cation effects on anion distributions in aluminophosphate glasses. J. Am. Ceram. Soc. 84, 1025–1032 (2001)CrossRefGoogle Scholar
  30. 30.
    Mohaghegh, E., Nemati, A., Yekta, B.E., Banijamali, S., Rezaei, F.: Influence of Fe2O3 on non-isothermal crystallization kinetics and microstructure of lithium titanium phosphate glass-ceramics. J. Non-Cryst. Solids. 408, 130–136 (2015)CrossRefGoogle Scholar
  31. 31.
    Barth, T.F.W., Barth, T.F.W.: Theoretical petrology. Wiley (1962)Google Scholar
  32. 32.
    Kanamura, K., Koizumi, S., Dokko, K.: Hydrothermal synthesis of LiFePO 4 as a cathode material for lithium batteries. J. Mater. Sci. 43, 2138–2142 (2008)CrossRefGoogle Scholar
  33. 33.
    Nagakane, T., Yamauchi, H., Yuki, K., Ohji, M., Sakamoto, A., Komatsu, T., et al.: Glass-ceramic LiFePO4 for lithium-ion rechargeable battery. Solid State Ionics. 206, 78–83 (2012)CrossRefGoogle Scholar
  34. 34.
    Liu, S., Yang, R., Wang, Y.: Effects of the substitution of P2O5 with B2O3 on the structure, iron valence, thermal and crystallization behavior of lithium-iron-phosphate glasses. J. Non-Cryst. Solids. 453, 158–163 (2016)CrossRefGoogle Scholar
  35. 35.
    Ji, P., Wang, Y., Zhang, M., Li, B., Zhang, G.: P2O5-Fe2O3-CaO-SiO2 ferromagnetic glass-ceramics for hyperthermia. Int. J. Appl. Ceram. Technol. 15, 1261–1267 (2018)CrossRefGoogle Scholar
  36. 36.
    Nayak, M.T., Desa, J.E., Babu, P.: Magnetic and spectroscopic studies of an iron lithium calcium silicate glass and ceramic. J. Non-Cryst. Solids. 484, 1–7 (2018)CrossRefGoogle Scholar
  37. 37.
    Bretcanu, O., Verné, E., Cöisson, M., Tiberto, P., Allia, P.: Magnetic properties of the ferrimagnetic glass-ceramics for hyperthermia. J. Magn. Magn. Mater. 305, 529–533 (2006)CrossRefGoogle Scholar
  38. 38.
    Abo-Naf, S., Abdel-Hameed, S., Marzouk, M., Elwan, R.: Sol–gel synthesis, paramagnetism, photoluminescence and optical properties of Gd-doped and Bi–Gd-codoped hybrid organo-silica glasses. J. Mater. Sci. Mater. Electron. 26, 2363–2373 (2015)CrossRefGoogle Scholar
  39. 39.
    Marzouk, M., Abdel-Hameed, S.: Development and characterization of magnetic glass-ceramic: correlation between phosphate and borate matrices and 5-fluorouracil delivery. J. Drug Delivery Sci. Technol. 38, 107–115 (2017)CrossRefGoogle Scholar
  40. 40.
    Salman, S., Salama, S., Abo-Mosallam, H.: The effect of aluminum and germanium oxides on the crystallization process and magnetic properties of Li2O–Fe2O3–SiO2 glass system. Ceram. Int. 41, 1521–1529 (2015)CrossRefGoogle Scholar
  41. 41.
    Salman, S., Salama, S., Abo-Mosallam, H.: Contribution of some divalent oxides replacing Li2O to crystallization characteristics and properties of magnetic glass–ceramics based on Li2O–Fe2O3–Al2O3–SiO2. Ceram Int. 42, 8650–8656 (2016)CrossRefGoogle Scholar
  42. 42.
    Liao, Y., Wang, H., Zhang, D., Li, Y., Su, H., Li, J., et al.: Magnetic properties of low temperature sintered LiZn ferrites by using Bi2O3-Li2CO3-CaO-SnO2-B2O3 glass as sintering agent. Ceram. Int. 44, 5513–5517 (2018)CrossRefGoogle Scholar
  43. 43.
    Zaitsev, D.D., Kazin, P.E., Gravchikova, E.A., Trusov, L.A., Kushnir, S.E., Tretyakov, Y.D., et al.: Synthesis of magnetic glass ceramics containing fine SrFe12O19 particles. Mendeleev Commun. 14, 171–173 (2004)CrossRefGoogle Scholar
  44. 44.
    Kosova, N., Osintsev, D., Uvarov, N., Devyatkina, E.: Lithium titanium phosphate as cathode, anode and electrolyte for Lithium rechargeable batteries. Chem. Sustain. Dev. 13, 253–260 (2005)Google Scholar

Copyright information

© Australian Ceramic Society 2019

Authors and Affiliations

  1. 1.Glass Research DepartmentNational Research CentreCairoEgypt

Personalised recommendations