Advertisement

Production parameters affecting the synthesis and properties of hBN-SiC composites

  • Zuhal YılmazEmail author
  • Nuran Ay
Research

Abstract

In this study, the hexagonal boron nitride (hBN)-SiC composite powder synthesis was investigated with an in situ reaction method. Boric acid (H3BO3) and urea (CO(NH2)2) were used for hBN formation. In the hBN-SiC composite powder synthesis, primarily raw materials were homogeneously stirred in ethanol with Si3N4 balls. The samples were calcined and sintered by spark plasma sintering at 2000 °C under pressure of 50 MPa for 15 min. The characterization of composite samples was carried out by XRD, SEM-EDS, FTIR, and TG-DTA. The bulk density, Vickers hardness, and Young’s modulus of samples were also measured. Composites were obtained, which had homogeneous microstructure. Residual boron oxides were found in samples with short calcination times. Moreover, it was found that the production parameters affect the physical properties of the composites and the amount of the hBN in sintered samples.

Keywords

hBN SiC Composites Calcination Physical properties 

Notes

Funding information

The authors would like to thank the Scientific Research Project Commission of Anadolu University (grant number 1406F321) for the financial support.

References

  1. 1.
    Abderrazak, H., Hadj Hmida, E.S.B.: Silicon carbide: synthesis and properties. In: Gerhardt, R. (ed.) Properties and Applications of Silicon Carbide, pp. 361–388. InTech, Tunisia (2011)Google Scholar
  2. 2.
     Rashed,A.H.: Properties and characteristics of silicon carbide. s.l.: Poco Graphite, TX. 76234, 1–19 (2002)Google Scholar
  3. 3.
    Saddow, S.E., Agarwal, A.: Advances in Silicon Carbide Processing and Applications, pp. 1–58053–1–740-5. Artech House, London (2004)Google Scholar
  4. 4.
    Shi, X., Wang, S., Yang, H., Duan, X., Dong, X.: Fabrication and characterization of hexagonal boron nitride powder by spray drying and calcining-nitriding technology. J. Solid State Chem. 181, 2274–2278 (2008)CrossRefGoogle Scholar
  5. 5.
     Ertuğ, B., Addemir, O.: Hegzagonal bor nitrür seramik tozlarının temel endüstriyel üretim yöntemleri. http://www.metalurji.org.tr/dergi/dergi136/d136_5458.pdf. Accessed 15 July 2017
  6. 6.
    Jin, H., Xu, H., Qiao, G., Gao, J., Jin, Z.: Study of machinable silicon carbide-boron nitride ceramic composites. Mater. Sci. Eng. A. 214–217 (2008)CrossRefGoogle Scholar
  7. 7.
    Jin, H., Gao, N., Qiao, G., Gao, J.: Fabrication and properties of machinable SiC/h-BN nano-composites. J. Ceram. Process. Res. 9, 630–633 (2008)Google Scholar
  8. 8.
    Zhang, G.J., Beppu, Y., Ohji, T., Kanzakı, S.: Reaction mechanism and microstructure development of strain tolerant in situ SiC–BN composites. Acta Mater. 49, 77–82 (2000)CrossRefGoogle Scholar
  9. 9.
    Zhang, G.J., Ohji, T.: Effect of BN content on elastic modulus and bending strength of SiC–BN in situ composites. Mater. Res. Soc. 15, 1876–1880 (2000)CrossRefGoogle Scholar
  10. 10.
    Zhang, G.J., Ohji, T.: In situ reaction synthesis of silicon carbide–boron nitride composites. J. Am. Ceram. Soc. 84, 1475–1479 (2001)CrossRefGoogle Scholar
  11. 11.
    Zhang, G.J., Yang, J.F., Deng, Z.Y., Ohjı, T.: Effect of Y2O3-Al2O3 additive on the phase formation and densification process of in situ SiC-BN composite. J. Ceram. Soc. Jpn. 109, 45–48 (2001)CrossRefGoogle Scholar
  12. 12.
    Zhang, G.J., Beppu, Y., Ando, M.: In situ reaction synthesis of silicon carbide–boron nitride composite from silicon nitride-boron oxide-carbon. J. Am. Ceram. Soc. 85, 2858–2860 (2002)CrossRefGoogle Scholar
  13. 13.
    Zheng, Y.T., Li, H.B., Zhou, T.: Microstructure and mechanical properties of h-BN–SiC ceramic composites prepared by in situ combustion synthesis. Mater. Sci. Eng. A 540, 102–106 (2012)CrossRefGoogle Scholar
  14. 14.
    Kusunose, T., Sekino, T., Ando, Y.: Synthesis of SiC/BN nanocomposite powders by carbothermal reduction and nitridation of borosilicate glass, and the properties of their sintered composites. Nanotechnology. 19, 275603 (2008) 9ppCrossRefGoogle Scholar
  15. 15.
    Kusunose, T., Sekino, T., Niihara, K.: Contact damage of silicon carbide/boron nitride nanocomposites. J. Am. Ceram. Soc. 90, 3341–3344 (2007)CrossRefGoogle Scholar
  16. 16.
    Wang, X., Qiao, G., Jin, Z.: Preparation of SiC/BN nanocomposite powders by chemical processing. Mater. Lett. 58, 1419–1423 (2004)CrossRefGoogle Scholar
  17. 17.
    Wang, X., Qiao, G., Jin, Z.: Fabrication of machinable silicon carbide-boron nitride ceramic nanocomposites. J. Am. Ceram. Soc. 87, 565–570 (2004)CrossRefGoogle Scholar
  18. 18.
    Madhurambal, G., Mariappan, M., Mojumdar, S.C.: TG–DTA, UV and FTIR spectroscopic studies of urea-thiourea mixed crystal. J. Therm. Anal. Calorim. 100, 853–856 (2010)CrossRefGoogle Scholar
  19. 19.
    Jones, J.M., Rollinson, A.N.: Thermogravimetric evolved gas analysis of urea and urea solutions with nickel alumina catalyst. Thermochim. Acta. 565, 39–45 (2013)CrossRefGoogle Scholar
  20. 20.
    Chen, J.P., Isa, K.: Thermal decomposition of urea and urea derivatives by simultaneous TG/(DTA)/MS. J. Mass. Spectrom. Soc. Jpn. 46, 299–303 (1998)CrossRefGoogle Scholar
  21. 21.
    Sevim, F., Demir, F., Bilen, M., Okur, H.: Kinetic analysis of thermal decomposition of boric acid from thermogravimetric data. Korean J. Chem. Eng. 23, 736–740 (2006)CrossRefGoogle Scholar
  22. 22.
    Gedikbey, T., Şarda, D., Birlik, E.: Uleksit ve tünellit mineralinden borik asit üretimi. IIUluslararasi Bor Sempozyumu. 291–296 (2004)Google Scholar
  23. 23.
    Condon, J.B., Holcombe, C.E., Johnson, D.H., Steckel, L.M.: The kinetics of the boron plus nitrogen reaction. Inorg. Chem. 15(9), 2173–2179 (1976)CrossRefGoogle Scholar
  24. 24.
    Besisaa, D.H.A., Hagrasa, M.A.A., Ewaisa, E.M.M., Ahmeda, Y.M.Z., Zakia, Z.I., Ahmed, A.: Low temperature synthesis of nano-crystalline h-boron nitride from boric acid/urea precursors. J. Ceram. Process. Res. 17, 1219–1225 (2016)Google Scholar
  25. 25.
    Berchmans, L.J., Bharathi, B., Amalajyothi, K., Subramanian, K.: Synthesis of nanocrystalline boron nitride by combustion process. Int. J. Self-Propag. High-Temp. Synth. 18, 34–37 (2009)CrossRefGoogle Scholar
  26. 26.
    Tehrani, F.S., Goh, B.T., Muhamad, M.R., Rahman, S.A.: Pressure dependent structural and optical properties of silicon carbide thin films deposited by hot wire chemical vapor deposition from pure silane and methane gases. J. Mater. Sci. Mater. Electron. 24, 1–8 (2012)Google Scholar
  27. 27.
    Saravanan, L., Subramanian, S., Vishu Kumar, A.B., Tharanathan, R.N.: Surface chemical studies on SiC suspension in the presence of chitosan. Ceram. Int. 32, 637–646 (2006)CrossRefGoogle Scholar
  28. 28.
    Garbuz, V.V., Lobunets, T.F., Petrova, V.A., Tomila, T.V., Suvorova, L.S.: Physicochemical characterstics of nitrogen sorption on high-porous powders of graphene-like boron nitride powder. Metall. Met. Ceram. 55, 7–8 (2016)Google Scholar
  29. 29.
    Lopes, B.B., Rangel, R.C.C., Antonio, C.A., Durrant, S.F., Cruz, N.C., Rangel, E.C.: Mechanical and tribological properties of plasma deposited a-C:H:Si:O films, Nanoindentation in Materials Science, Chapter 8. J. Nemecek. 170–202 (2012)Google Scholar
  30. 30.
    Rashid, N.M.A., Ritikos, R., Goh, B.T., Gani, S.M.A., Muhamad, M.R., Rahman, S.A.: Effects of thermal annealing on the properties of highly reflective nc-Si:H/a-CNx:H multilayer films prepared by r. f. pecvd technique. Solid State Sci. Technol. 19, 132–137 (2011)Google Scholar
  31. 31.
    Bondareva A.V., Kovalskiia A.M., Firesteina K.L., Loginova B P.A., Sidorenkoa D.A., Shvindinaa N.V., Sukhorukovaa I.V., Shtanskya D.V.: Hollow spherical and nanosheet-base BN nanoparticles as perspective additives to oil lubricants: correlation between large-scale friction behavior and in situ TEM compression testing. Ceram. Int. 44, 6801–6809 (2018)CrossRefGoogle Scholar
  32. 32.
    Kharazmi, A., Faraji, N., Hussin, R.M., Saion, E., Mat Yunus, W.M., Behzad, K.: Structural, optical, opto-thermal and thermal properties of ZnS–PVA nanofluids synthesized through a radiolytic approach. J. Nanotechnol. 6, 529–536 (2015)Google Scholar
  33. 33.
    Fischer P.H.H., McDowell C.A: The infrared absorption spectra of urea-hydrocarbon. Can. J. Chem. 38, (1960)CrossRefGoogle Scholar
  34. 34.
    Renuga Devı, T.S., Gayathrı, S.: FTIR and FT-Raman spectral analysıs of paclitaxel drugs. Int. J. Pharm. Sci. Rev. Res. 2, 106–110 (2010)Google Scholar
  35. 35.
    Burie, J.R., Boussac, A., Bodlais, C., Berger, C., Mattioli, T., Mioskowski, C., Nabedryk, E., Breton, J.: FTIR spectroscopy of uv-generated quinone radicals: evidence for an ıntramolecular hydrogen atom transfer in ubiquinone, naphthoquinone and plastoquinone. J. Phys. Chem. 99, 4059–4070 (1995)CrossRefGoogle Scholar
  36. 36.
    Grdadolnik, J., Maréchal, Y.: Urea and urea–water solutions an infrared study. J. Mol. Struct. 615, 177–189 (2002)CrossRefGoogle Scholar
  37. 37.
    Hernandez, M.T., Gonzalez, M.: Synthesis of resins as alpha-alumina precursors by the Pechini method using microwave and infrared heating. J. Eur. Ceram. Soc. 22, 2861–2868 (2002)CrossRefGoogle Scholar
  38. 38.
    Oancea, A., Grasset, O., Le Menn, E., Bollengier, O., Bezacier, L., Le Mouélic, S., Tobie, G.: Laboratory infrared reflection spectrum of carbon dioxide clathrate hydrates for astrophysical remote sensing applications. Icarus. 221, 900–910 (2012)CrossRefGoogle Scholar
  39. 39.
    Kodera, Y., Toyofuku, N., Yamasaki, H., Ohyanagi, M., Munir, Z.A.: Consolidation of SiC/BN composite through MA-SPS method. J. Mater. Sci. 43, 6422–6428 (2008)CrossRefGoogle Scholar
  40. 40.
    Akyol, S., Toy, C., Gönül, T., Tekin, A.: Crystallization behavior and characterization of turbostratic boron nitride. J. Eur. Ceram. Soc. 17, 1415–1422 (1997)CrossRefGoogle Scholar
  41. 41.
    Hagıo, T., Nonaka, K., Sato, T.: Microstructural development with crystallization of hexagonal boron nitride. J. Mater. Sci. Lett. 16, 795–798 (1997)CrossRefGoogle Scholar
  42. 42.
    Thomas, J., Weston, N.E., O’Connor, T.E.: Turbostratic boron nitride, thermal transformation to ordered-layer-lattice boron nitride. J. Am. Chem. Soc. 84, 4619–4622 (1963)CrossRefGoogle Scholar
  43. 43.
    Hubáček, M., Ueki, M., Sato, T., Brozek, V.: High-temperature behaviour of hexagonal boron nitride. Thermochim. Acta. 282/283, 359–367 (1996)CrossRefGoogle Scholar
  44. 44.
    Brožek, V., Hubáček, M.: A contribution to the crystallochemistry of boron nitride. J. Solid State Chem. 100, 120–129 (1992)CrossRefGoogle Scholar
  45. 45.
    Garbuz, V.V., Petrova, V.A., Suvorova, L.S., Silinska, T.A., Kuzmenko, L.M.: Model of reactions for the synthesis of turbostratic boron nitride nanoparticles from urea. Powder Metall. Met. Ceram. 56, 7–8 (2017)Google Scholar
  46. 46.
    Shuba, R., Chen, I.-W.: Machinable α-SiAlON/BN composites. J. Am. Ceram. Soc. 89, 2147–2153 (2006)Google Scholar
  47. 47.
    Motealleh, A., Ortiz, A.L., Borrero-López, O., Guiberteau, F.: Effect of hexagonal-BN additions on the sliding-wear resistance offine-grained alpha-SiC densified with Y3Al5O12 liquid phase by spark-plasma sintering. J. Eur. Ceram. Soc. 34, 565–574 (2014)CrossRefGoogle Scholar
  48. 48.
     Abderrazak, H., Hadj Hmida, E.S.B.: Silicon carbide: synthesis and properties. R. Gerhardt. Properties and Applications of Silicon Carbide. Tunisia: InTech, 3, 201161–388 (n.d.)Google Scholar
  49. 49.
    Omori, M., Takei, H.: Pressureless sintering of SiC. J. Am. Ceram. Soc. 65, 92 (1982)CrossRefGoogle Scholar
  50. 50.
    She, J.H., Ueno, K.: Effect of additive content on liquid-phase sinterıng on silicon carbide ceramics. Mater. Res. Bull. 34, 1629–1636 (1999)CrossRefGoogle Scholar
  51. 51.
    Luoa, X., Goel, S., Reuben, R.L.: A quantitative assessment of nanometric machinability of major polytypes of single crystal silicon carbide, s.l. J. Eur. Ceram. Soc. 32, 3423–3434 (2012)CrossRefGoogle Scholar
  52. 52.
    Kumar, V.: Synthesis and study of photoluminescence properties of nanostructured boron nitride, pp. 44–50. Jadavpur University, India (2011)Google Scholar
  53. 53.
    Lorrette, C., Réau, A., Briottet, L.: Mechanical properties of nanostructured silicon carbide consolidated by spark plasma sintering. J. Eur. Ceram. Soc. 33, 147–156 (2013)CrossRefGoogle Scholar
  54. 54.
    Maıtre, A., Vande Put, A., Laval, J.P., Valette, S., Trolliard, G.: Role of boron on the spark plasma sintering of an alfa-SiC powder. J. Eur. Ceram. Soc. 28, 1881–1890 (2008)CrossRefGoogle Scholar
  55. 55.
    Stobierski, L., Gubernat, A.: Sintering of silicon carbide II. Effect of boron. Ceram. Int. 29, 355–361 (2003)CrossRefGoogle Scholar
  56. 56.
    Lu, B., Zhang, Y.: Densification behavior and microstructure evolution of hot-pressed SiC–SiBCN ceramics. Ceram. Int. 4, 8541–8551 (2015)CrossRefGoogle Scholar
  57. 57.
    Yang, Z.H., Jia, D.C., Zhou, Y., Shi, P.Y., Song, C.B., Lin, L.: Oxidation resistance of hot-pressed SiC–BN composites. s.l. Ceram. Int. 34, 317–321 (2008)CrossRefGoogle Scholar

Copyright information

© Australian Ceramic Society 2020

Authors and Affiliations

  1. 1.SMYOBilecik Şeyh Edebali UniversityBilecikTurkey
  2. 2.Department of Material Science and EngineeringEskişehir Technical UniversityEskişehirTurkey

Personalised recommendations