Advertisement

In vitro studies of α-TCP and β-TCP produced from Clinocardium ciliatum seashells

  • Yesim Muge SahinEmail author
  • Zeynep Orman
  • Sevil Yucel
Research
  • 12 Downloads

Abstract

In this study, α-TCP and β-TCP were successfully produced via a mechanochemical method from aragonite structures, Clinocardium ciliatum seashells, at 850 °C, 1000 °C, and 1200 °C sintering temperatures. The characterization of the obtained materials was carried out via FT-IR, SEM/EDX, BET, XRD, ICP-OES analysis. Samples were soaked for 21 days in simulated body fluid (SBF) for a bioactivity test. Additionally, MTT assay was applied to determine the cell viability of samples. Bioactivity in vitro tests showed that bone-like hydroxyapatite formed when the α-TCP and β-TCP were soaked in SBF. TCP bioceramics had a noncytotoxicity effect on SAOS-2 osteoblast-like cells and cell viability increased in 1 to 7 days. The produced bioceramics have ideal pore sizes and properties that are suitable for supporting biological activities. Tris-HCl buffer solution was used to obtain the level of biodegradation. It was seen that α-TCP exhibited better dissolution features than β-TCP.

Keywords

Bioactivity Bone regeneration SBF Seashell TCP Tris 

Notes

Acknowledgments

Special thanks to ArelPOTKAM (Polymer Technologies and Composite Application and Research Center) where the synthesis of bioceramics took place.

References

  1. 1.
    León, B., Jansen, J.: Thin Calcium Phosphate Coatings for Medical Implants, New York (2009)Google Scholar
  2. 2.
    Sych, O., Iatsenko, A., Tomila, T., Otychenko, O., Bykov, O., Yevych, Y.: Si-modified highly-porous ceramics based on nanostructured biogenic hydroxyapatite for medical use. Adv. Nano-Bio-Mater. Dev. 2, 223–229 (2018)Google Scholar
  3. 3.
    Perera, F.H., Martínez, V., Miranda, F.J., Ortiz, P., Pajares, A.L.: Clarifying the effect of sintering conditions on the microstructure and mechanical properties of β-tricalcium phosphate. Ceram Int. 6, 1929–1935 (2010)CrossRefGoogle Scholar
  4. 4.
    Metsger, D.S., Driskell, T.D., Paulsrud, J.R.: Tricalcium phosphate ceramic--α resorbable bone implant: review and current status. J Am Dent Assoc. 6, 1035–1038 (1982)CrossRefGoogle Scholar
  5. 5.
    Cho, I.S., Ryu, H.S., Kim, J., Kim, D.W., Hong, K.S.: Sintering behavior and microwave dielectric properties of tricalcium phosphate polymorphs. Jpn J Appl Phys. 46, 2999–3003 (2007)CrossRefGoogle Scholar
  6. 6.
    Horch, H.H., Sader, R., Pautke, C., Neff, A., Deppe, H., Kolk, A.: Synthetic pure-phase β-tricalcium phosphate ceramic granules (Cerasorb) for bone regeneration in the reconstructive surgery of the jaws. Int. J. Oral Maxillofac. Surg. 8, 708–713 (2006)CrossRefGoogle Scholar
  7. 7.
    Jung, U.W., Moon, H.I., Kim, C., Lee, Y.K., Kim, C.K., Choi, S.H.: Evaluation of different grafting materials in three-wall intra-bony defects around dental implants in beagle dogs. Curr. Appl. Phys. 5, 507–511 (2005)CrossRefGoogle Scholar
  8. 8.
    Yoneda, M., Terai, H., Imai, Y., Okada, T., Nozaki, K., Inoue, H., Miyamoto, S., Takaoka, K.: Repair of an intercalated long bone defect with a synthetic biodegradable bone-inducing Implant. Biomaterials. 26(25), 5145–5152 (2005)CrossRefGoogle Scholar
  9. 9.
    Sous, M., Bareille, R., Rouais, F., Clément, D., Amédée, J., Dupuy, B., Baquey, C.: Cellular biocompatibility and resistance to compression of macroporous β-tricalcium phosphate ceramics. Biomaterials. 19(23), 2147–2153 (1998)CrossRefGoogle Scholar
  10. 10.
    Miranda, P., Saiz, E., Gryn, K., Tomsia, A.P.: Sintering and robocasting of β-tricalcium phosphate scaffolds for orthopaedic applications. Acta Biomater. 2(4), 457–466 (2006)CrossRefGoogle Scholar
  11. 11.
    Miranda, P., Pajares, A., Saiz, E., Tomsia, A.P., Guiberteau, F.: Mechanical properties of calcium phosphate scaffolds fabricated by robocasting. J Biomed Mater Res A. 1(85), 218–227 (2008)CrossRefGoogle Scholar
  12. 12.
    Durucan, C., Brown, P.W.: Reactivity of alpha-tricalcium phosphate. J. Mater. Sci. 5(37), 963–969 (2002)CrossRefGoogle Scholar
  13. 13.
    Rao, R.R., Mariappan, L.: Synthesis of nanohydroxyapatite and hydroxyapatite - polycaprolactone composite. Adv. Nano-Bio-Mater. Dev. 1, 86–98 (2017)Google Scholar
  14. 14.
    Chou, J., Samur, R., Ozyegin, L.S., Ben-Nissan, B., Oktar, F.N., Macha, I.: An alternative synthesis method for di calcium phosphate (Monetite) powders from Mediterranean mussel (Mytilus galloprovincialis) shells. J Aust. Ceram. Soc. 2(49), 122–128 (2012)Google Scholar
  15. 15.
    Gunduz, O., Sahin, Y.M., Agathopoulos, S., Ben-Nissan, B., Oktar, F.N.: A new method for fabrication of nanohydroxyapatite and TCP from the sea snail Cerithium vulgatum. J Nanomater. 2014, 1–6 (2014)CrossRefGoogle Scholar
  16. 16.
    Şahin, Y., Gündüz, O., Bulut, B., Özyeğin, L., Gökçe, H., Ağaoğulları, D., Chou, J., Kayalı, E., Ben-Nissan, B., Oktar, F.: Nano-bioceramic synthesis from tropical sea snail shells (Tiger cowrie - Cypraea Tigris) with simple chemical treatment. Acta. Phys. Pol A. 4(127), 1055–1058 (2015)Google Scholar
  17. 17.
    Ağaoğullari, D., Kel, D., Gökçe, H., Duman, I., Öveçoğlu, M.L., Akarsubaşi, A.T., Bilgiç, D., Oktar, F.N.: Bioceramic production from sea urchins. Acta. Phys. Pol. A. 121(1), 23–25 (2012)CrossRefGoogle Scholar
  18. 18.
    Gunduz, O., Sahin, Y.M., Agathopoulos, S., Ağaoğulları, D., Gökçe, H., Kayali, E.S., Aktas, C., Ben-Nissan, B., Oktar, F.N.: Nano calcium phosphate powder production through chemical agitation from Atlantic deer cowrie shells (Cypraea cervus Linnaeus). Key Eng Mater. 587, 80–85 (2013)CrossRefGoogle Scholar
  19. 19.
    Tămăşan, M., Ozyegin, L.S., Oktar, F.N., Simon, V.: Characterization of calcium phosphate powders originating from Phyllacanthus imperialis and Trochidae Infundibulum concavus marine shells. Mater. Sci. Eng. C. 33(5), 2569–2577 (2013)CrossRefGoogle Scholar
  20. 20.
    Lemos, A.F., Rocha, J.H.G., Quaresma, S.S.F., Kannan, S., Oktar, F.N., Agathopoulos, S., Ferreira, J.M.F.: Hydroxyapatite nano-powders produced hydrothermally from nacreous material. J Eur Ceram Soc. 26(16), 3639–3646 (2006)CrossRefGoogle Scholar
  21. 21.
    Samavedi, S., Whittington, A.R., Goldstein, A.S.: Calcium phosphate ceramics in bone tissue engineering: a review of properties and their influence on cell behavior. Acta. Biomater. 9(9), 8037–8045 (2013)CrossRefGoogle Scholar
  22. 22.
    Santos, E.A., Farina, M., Soares, G.A., Anselme, K.: Chemical and topographical influence of hydroxyapatite and beta-tricalcium phosphate surfaces on human osteoblastic cell behavior. J Biomed. Mater. Res. A. 89(2), 510–520 (2009)CrossRefGoogle Scholar
  23. 23.
    Jalota, S., Bhaduri, S.B., Tas, A.C.: In vitro testing of calcium phosphate (HA, TCP, and biphasic HA-TCP) whiskers. J Biomed. Mater. Res. A. 78(3), 481–490 (2006)CrossRefGoogle Scholar
  24. 24.
    R.T. Abbott and P.A. Morris, A field guide to shells: Atlantic and Gulf Coasts and the West Indies., (1995), N YGoogle Scholar
  25. 25.
    Kokubo, T., Takadama, H.: How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 27(15), 2907–2915 (2006)CrossRefGoogle Scholar
  26. 26.
    Sobczak-Kupiec, A., Wzorek, Z., Kijkowska, R., Kowalski, Z.: Effect of calcination conditions of pork bone sludge on behaviour of hydroxyapatite in simulated body fluid. Bull Mater Sci. 36(4), 755–764 (2013)CrossRefGoogle Scholar
  27. 27.
    Descamps, M., Hornez, J.C., Leriche, A.: Effects of powder stoichiometry on the sintering of β-tricalcium phosphate. J Eur Ceram Soc. 27(6), 2401–2406 (2007)CrossRefGoogle Scholar
  28. 28.
    Uchino, T., Yamaguchi, K., Suzuki, I., Kamitakahara, M., Otsuka, M., Ohtsuki, C.: Hydroxyapatite formation on porous ceramics of α-tricalcium phosphate in a simulated body fluid. J Mater Sci Mater Med. 21(6), 1921–1926 (2010)CrossRefGoogle Scholar
  29. 29.
    Duan, Y.R., Zhang, Z.R., Wang, C.Y., Chen, J.Y., Zhang, X.D.: Dynamic study of calcium phosphate formation on porous HA/TCP ceramics. J Mater Sci Mater Med. 16(9), 795–801 (2005)CrossRefGoogle Scholar
  30. 30.
    Ozeki, K., Fukui, Y., Aoki, H.: Influence of the calcium phosphate content of the target on the phase composition and deposition rate of sputtered films. Appl Surf Sci. 253(11), 5040–5044 (2007)CrossRefGoogle Scholar

Copyright information

© Australian Ceramic Society 2019

Authors and Affiliations

  1. 1.ArelPOTKAM (Polymer Technologies and Composite Application and Research Center)Istanbul Arel UniversityIstanbulTurkey
  2. 2.Department of Biomedical EngineeringIstanbul Arel UniversityIstanbulTurkey
  3. 3.Department of BioengineeringYildiz Technical UniversityIstanbulTurkey

Personalised recommendations