Advertisement

Effect of process parameters on the visible light photocatalytic performance of SnO by microwave synthesis

  • Baoyan Liang
  • Lingjie Zhang
  • Wenke Wang
  • Guagcun Xu
  • Wangxi ZhangEmail author
  • Yanli Zhang
  • Ruijie Zhang
  • Ying Liu
  • Li Yang
  • Libo ZhangEmail author
Research
  • 16 Downloads

Abstract

The effects of synthesis parameters, including pH, solvent, and output energy mode, on the synthesis and photocatalytic activity of SnO were investigated. The results exhibited that Cl-doped SnO samples with a particle size of approximately 50 nm were successfully obtained, with a BET surface area of approximately 7 m2/g. These parameters showed weak effects on phase composition, morphology, and particle size; however, they affected the degradation efficiency of SnO samples to MO. The optimum degradation efficiency of SnO samples to MO can be obtained by using an appropriate proportion of water and alcohol, acid condition, and three modes of output.

Keywords

pH value Modes of output Solvent Photocatalytic 

Notes

Funding information

The authors would like to thank National Natural Science Foundation of China (No. 51864028), the Natural Science Foundation of Henan (No. 17A430034 and No. 18A430035), Henan University Innovation Team Project (No. 15IRTSTHN004), and Henan Science and Technology Innovation Team (No. CXTD2013048).

References

  1. 1.
    Yang, J., Wang, G., Wang, D., Liu, C., Zhang, Z.: A self-cleaning coating material of TiO2, porous microspheres/cement composite with high-efficient photocatalytic depollution performance. Mater Lett. 200, 1–5 (2017)CrossRefGoogle Scholar
  2. 2.
    Daghrir, R., Drogui, P., Robert, D.: Modified TiO2 for environmental photocatalytic applications: a review. Ind Eng Chem Res. 52, 3581–3599 (2013)CrossRefGoogle Scholar
  3. 3.
    Geim, A.K., Novoselov, K.S.: The rise of grapheme. Nat Mater. 6, 183–191 (2007)CrossRefGoogle Scholar
  4. 4.
    Yoo, E.J., Kim, J., Hosono, E., Zhou, H.S., Kudo, T., Honma, I.: Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett. 8, 2277–2282 (2008)CrossRefGoogle Scholar
  5. 5.
    Santhi, K., Rani, C., Karuppuchamy, S.: Synthesis and characterization of a novel SnO/SnO2 hybrid photocatalyst. J Alloys Compd. 662, 102–107 (2016)CrossRefGoogle Scholar
  6. 6.
    Liang, B.Y., Han, D.H., Sun, C.H., Zhang, W.X., Qin, Q.: Synthesis of SnO/g-C3N4 visible light driven photocatalysts via grinding assisted ultrasonic route. Ceram Int. 44, 7315–7318 (2018)CrossRefGoogle Scholar
  7. 7.
    Cui, Y.K., Wang, F.P., Iqbal, M.Z., Wang, Z.Y., Li, Y., Tu, J.H.: Synthesis of novel 3D SnO flower-like hierarchical architectures self-assembled by nano-leaves and its photocatalysis. Mater Res Bull. 70, 784–788 (2015)CrossRefGoogle Scholar
  8. 8.
    Patiphatpanya, P., Phuruangrat, A., Thongtem, S., Thongtem, T.: Microwave-assisted synthesis and characterization of BiOIO3 nanoplates for photocatalysis. Mater Lett. 209, 264–267 (2017)CrossRefGoogle Scholar
  9. 9.
    Akram, M., Alshemary, A.Z., Butt, F.K., Goh, Y.F., Wan, A.W.I., Hussain, R.: Continuous microwave flow synthesis and characterization of nanosized tin oxide. Mater Lett. 160, 146–149 (2015)CrossRefGoogle Scholar
  10. 10.
    Zarghami, Z., Ramezani, M., Maddahfar, M.: Simple microwave-assisted synthesis of Cu@CuSO4 as co-catalyst of TiO2 for photocatalytic degradation of methylene blue. Mater Lett. 152, 21–24 (2015)CrossRefGoogle Scholar
  11. 11.
    Li, H., Su, Z., Hu, S., Yan, Y.: Free-standing and flexible Cu/Cu2O/CuO heterojunction net: a novel material as cost-effective and easily recycled visible-light photocatalyst. Appl Catal B-Environ. 207, 134–142 (2017)CrossRefGoogle Scholar
  12. 12.
    Parthibavarman, M., Sathishkumar, S., Prabhakaran, S.: Enhanced visible light photocatalytic activity of tin oxide nanoparticles synthesized by different microwave optimum conditions. J Mater Sci Mater El. 29, 2341–2350 (2018)CrossRefGoogle Scholar
  13. 13.
    Park, S., Selvaraj, R., Meetani, M.A., Kim, Y.: Enhancement of visible-light-driven photocatalytic reduction of aqueous Cr(VI) with flower-like In3 +-doped SnS2. J Ind Eng Chem. 45, 206–214 (2017)CrossRefGoogle Scholar
  14. 14.
    Prakash, K., Kumar, P.S., Latha, P., Durai, K.S., Shanmugam, R., Karuthapandian, S.: Dry synthesis of water lily flower like SrO2/g-C3N4 nanohybrids for the visible light induced superior photocatalytic activity. Mater Res Bull. 93, 112–122 (2017)CrossRefGoogle Scholar
  15. 15.
    Arul, N.S., Mangalaraj, D., Han, J.I.: Enhanced photocatalytic property of self-assembled Fe-doped CeO2 hierarchical nanostructures. Mater Lett. 145, 189–192 (2015)CrossRefGoogle Scholar
  16. 16.
    Wang, X.K., Wang, C., Jiang, W.Q., Guo, W.L., Wang, J.G.: Sonochemical synthesis and characterization of Cl-doped TiO2 and its application in the photodegradation of phthalate ester under visible light irradiation. Chem Eng J. 189–190, 288–294 (2012)CrossRefGoogle Scholar
  17. 17.
    Phuruangrat, A., Dumrongrojthanath, P., Kuntalue, B., Thongtem, S., Thongtem, T.: Synthesis and characterization of visible-light-driven Cl-doped Bi2MoO6 photocatalyst with enhanced photocatalytic activity. Mater Lett. 196, 256–259 (2017)CrossRefGoogle Scholar

Copyright information

© Australian Ceramic Society 2019

Authors and Affiliations

  • Baoyan Liang
    • 1
    • 2
  • Lingjie Zhang
    • 1
  • Wenke Wang
    • 1
  • Guagcun Xu
    • 1
  • Wangxi Zhang
    • 1
    • 2
    Email author
  • Yanli Zhang
    • 1
  • Ruijie Zhang
    • 1
  • Ying Liu
    • 1
  • Li Yang
    • 3
  • Libo Zhang
    • 3
    Email author
  1. 1.Materials and Chemical Engineering SchoolZhongyuan University of TechnologyZhengzhouChina
  2. 2.National and Local Joint Laboratory of Engineering of Diamond TechnologyZhengzhouChina
  3. 3.Faculty of Metallurgical and Energy EngineeringKunming University of Science and technologyKunmingChina

Personalised recommendations