The effect of alumina additive and sintering temperature on the microstructural, physical, mechanical, and bioactivity properties of hydroxyapatite–alumina composites

  • Suleyman Serdar PazarliogluEmail author
  • Serdar Salman


The aim of this study was to evaluate the effect of alumina (Al2O3) additive and sintering temperature on the microstructural, physical, mechanical, and in vitro bioactivity properties of hydroxyapatite (HA). The composites consisting of 2.5 and 5 wt% Al2O3 and monolithic HA were uniaxially pelleted at 350 MPa with the size of 11 and 11 mm2 and sintered at five different temperatures ranging from 900 to 1300 °C for 4 h. A series of thermal analysis methods and tests were used to evaluate both phase changes that occurred during sintering and the physical/mechanical properties of the sintered samples. The bioactivity property of the samples having the highest compressive strength value was investigated in a simulated body fluid (SBF) solution for 3, 7, 15, and 30 days. Results showed that HA without Al2O3 had started to decompose at 1200 °C, and the addition of Al2O3 led to the reduction of decomposition temperature from 1200 to 900 °C. However, the main phase was HA for all the sintered samples. The highest mechanical strength values were 130.20 ± 6.22, 60.27 ± 9.93, and 0.96 ± 0.05 MPa m1/2 for compressive strength, three-point bending strength, and fracture toughness, respectively, for monolithic HA when it was sintered at 1100 °C. All of these mechanical strength values of monolithic HA were improved higher than the rate of 60% as the grain growth of HA was inhibited by the addition of Al2O3. The highest mechanical strength values of HA–Al2O3 composites were obtained for the samples sintered at 1200 °C when the densification rate reached 90%. In vitro investigations showed that Al2O3 led to a reduction in the in vitro bioactivity of HA, but it could be used in the human body since its surface is coated by apatite layers when in vitro time reached 30 days.


Hydroxyapatite Alumina Sintering 


Funding information

The authors thank the economic support of the Scientific Research Centre of Marmara University (Project No: FEN-A-100616-0272).


  1. 1.
    Hench, L.L.: Medical materials for the next millennium. MRS Bull. 24(5), 13–20 (1999)CrossRefGoogle Scholar
  2. 2.
    Kamitakahara, M., Ohtsuki, C., Miyazaki, T.: Review paper: Behavior of ceramic biomaterials derived from tricalcium phosphate in physiological condition. J. Biomater. Appl. 23, 197–212 (2008)CrossRefGoogle Scholar
  3. 3.
    Bellucci, D., Desogus, L., Montinaro, S., Orrù, R., Cao, G., Cannillo, V.: Innovative hydroxyapatite/bioactive glass composites processed by spark plasma sintering for bone tissue repair. J. Eur. Ceram. Soc. 37, 1723–1733 (2017)CrossRefGoogle Scholar
  4. 4.
    Prokopiev, O., Sevostianov, I.: Dependence of the mechanical properties of sintered hydroxyapatite on the sintering temperature. Mater. Sci. Eng. A. 431, 218–227 (2006)CrossRefGoogle Scholar
  5. 5.
    Uysal, I., Severcan, F., Tezcaner, A., Evis, Z.: Co-doping of hydroxyapatite with zinc and fluoride improves mechanical and biological properties of hydroxyapatite. Prog. Nat. Sci.: Mater. Int. 24, 340–349 (2014)CrossRefGoogle Scholar
  6. 6.
    Ramesh, S., Natasha, A.N., Tan, C.Y., Bang, L.T., Ramesh, S., Ching, C.Y., Chandran, H.: Direct conversion of eggshell to hydroxyapatite ceramic by a sintering method. Ceram. Int. 42, 7824–7829 (2016)CrossRefGoogle Scholar
  7. 7.
    Metsger, D.S., Rieger, M.R., Foreman, D.W.: Mechanical properties of sintered hydroxyapatite and tricalcium phosphate ceramics. J. Mater. Sci. Mater. Med. 10, 9–17 (1999)CrossRefGoogle Scholar
  8. 8.
    Oktar, F.N., Göller, G.: Sintering effects on mechanical properties of glass-reinforced hydroxyapatite composites. Ceram. Int. 28, 617–621 (2002)CrossRefGoogle Scholar
  9. 9.
    Mobasherpour, I., Hashjin, M.S., Toosi, S.S.R., Kamachali, R.D.: Effect of the addition ZrO2-Al2O3 on nanocrystalline hydroxyapatite bending strength and fracture toughness. Ceram. Int. 35, 1569–1574 (2009)CrossRefGoogle Scholar
  10. 10.
    Lee, K.T., Cha, S.I., Kim, K.T., Lee, K.H., Hong, S.H.: Sintering behavior, microstructural evolution, and mechanical properties of ultra-fine grained alumina synthesized via in-situ spark plasma sintering. Ceram. Int. 42, 4290–4297 (2016)CrossRefGoogle Scholar
  11. 11.
    Halim, T., Burgett-Moreno, M., Donaldson, T., Clarke, I.C.: Third-body wear damage produced in CoCr surfaces by hydroxyapatite and alumina ceramic debris: a 10-cycle metal-on-metal simulator study. Reconstr. Rev. 5(4), 33–39 (2015)Google Scholar
  12. 12.
    Berger, J., Roch, T., Pistillo, N., Lasagni, A.F.: Multiple-beam laser patterning on aluminum oxide, zirconium oxide, and hydroxyapatite ceramic materials using a microlens array. J. Laser Appl. 28(4), 042003-1–042003-8 (2016)CrossRefGoogle Scholar
  13. 13.
    Kim, C.Y., Jee, S.S.: Hydroxyapatite formation on bioactive-glazed alumina. J. Eur. Ceram. Soc. 23, 1803–1811 (2003)CrossRefGoogle Scholar
  14. 14.
    Acchar, W., Cairo, C.A.: The influence of (Ti,W)C and NbC on the mechanical behavior of alumina. Mater. Res. 9(2), 171–174 (2006)CrossRefGoogle Scholar
  15. 15.
    Ibrahim, M.Z., Sarhan, A.A.D., Yusuf, F., Hamdi, M.: Biomedical materials and techniques to improve the tribological, mechanical and biomedical properties of orthopedic implants. J. Alloys Compd. 714, 636–667 (2017)CrossRefGoogle Scholar
  16. 16.
    Bandyopadhyay, A., Bernard, S., Xue, W., Bose, S.: Calcium phosphate-based resorbable ceramics: influence of MgO, ZnO, and SiO2 dopants. J. Am. Ceram. Soc. 89(9), 2675–2688 (2006)CrossRefGoogle Scholar
  17. 17.
    Kalmodia, S., Goenka, S., Laha, T., Lahiri, D., Basu, B., Balani, K.: Microstructure, mechanical properties, and in vitro biocompatibility of spark plasma sintered hydroxyapatite-aluminum oxide-carbon nanotube composite. Mater. Sci. Eng. C. 30, 1162–1169 (2010)CrossRefGoogle Scholar
  18. 18.
    Jun, Y.K., Kim, W.H., Kweon, O.K., Hong, S.H.: The fabrication and biochemical evaluation of alumina reinforced calcium phosphate porous implants. Biomaterials. 24, 3731–3739 (2003)CrossRefGoogle Scholar
  19. 19.
    Fujita, H., Kudo, T., Kanetaka, H., Miyazaki, T., Hashimoto, M., Kawashita, M.: Adsorption of laminin on hydroxyapatite and alumina and the MC3T3-E1 cell response. ACS Biomater. Sci. Eng. 2, 1162–1168 (2016)CrossRefGoogle Scholar
  20. 20.
    ASTM F 1185-88 (1993). Standard Specification for Composition of Ceramic Hydroxylapatite for Surgical Implants, American Society for Testing and Materials, ConshohockenGoogle Scholar
  21. 21.
    Landi, E., Tampieri, A., Celotti, G., Sprio, S., Sandri, M., Logroscino, G.: Sr-substituted hydroxyapatites for osteoporotic bone replacement. Acta Biomater. 3, 961–969 (2007)CrossRefGoogle Scholar
  22. 22.
    Ha, J.S.: Fabrication and characterization of hydroxyapatite/mullite and tricalcium phosphate/Al2O3 composites containing 30 wt% of bioactive components. J. Korean Ceram. Soc. 52(5), 374–379 (2015)CrossRefGoogle Scholar
  23. 23.
    Ji, H., Marquis, P.M.: Preparation and characterization of Al2O3 reinforced hydroxyapatite. Biomaterials. 13, 744–748 (1992)CrossRefGoogle Scholar
  24. 24.
    British Standard Non-Metallic Materials for Surgical Implants. Part 2: Specifications for Ceramic Materials Based on Alumina, BS 7253: Part 2: 1990 ISO 6474-1981Google Scholar
  25. 25.
    Sato, K., Yugami, H., Hashida, T.: Effect of rare-earth oxides on fracture properties of ceria ceramics. J. Mater. Sci. 39, 5765–5770 (2004)CrossRefGoogle Scholar
  26. 26.
    Muralithran, G., Ramesh, S.: The effects of sintering temperature on the properties of hydroxyapatite. Ceram. Int. 26, 221–230 (2000)CrossRefGoogle Scholar
  27. 27.
    Majling, J., Znáik, P., Palová, A., Stevĭk, S., Kovalĭk, S., Agrawal, D.K., Roy, R.: Sintering of the ultrahigh pressure densified hydroxyapatite monolithic xerogels. J. Mater. Res. 12(1), 198–202 (1997)CrossRefGoogle Scholar
  28. 28.
    Rahimiana, M., Ehsani, N., Parvin, N., Reza Baharvandi, H.: The effect of particle size, sintering temperature and sintering time on the properties of Al-Al2O3 composites, made by powder metallurgy. J. Mater. Process. Technol. 209, 5387–5393 (2009)CrossRefGoogle Scholar
  29. 29.
    Niihara, K.: Indentation microfracture of ceramics—its application and problems. J. Ceram. Soc. Jpn. 20, 12–18 (1985)Google Scholar
  30. 30.
    ASTM C1161-94: Standard Test Method for Flexural Strength of Advanced Ceramics at Ambient Temperature. Annual Book of ASTM Standards, USA (1996)Google Scholar
  31. 31.
    Kokubo, T., Yamamuro, T., Hench, L.L., Wilson, J.: Handbook on Bioactive Ceramics: Bioactive Glasses and Glass-Ceramics, vol. 1. CRC, Boca Raton (1990)Google Scholar
  32. 32.
    Senamaud, N., Bemache-Assollant, D., Champion, E., Heughebaert, M., Rey, C.: Calcination and sintering of hydroxyfluorapatite powders. Solid State Ionics. 101-103, 1357–1362 (1997)CrossRefGoogle Scholar
  33. 33.
    Dorozhkin, S.V.: Multiphasic calcium orthophosphate (CaPO4) bioceramics and their biomedical applications. Ceram. Int. 42, 6529–6554 (2016)CrossRefGoogle Scholar
  34. 34.
    Safina, M.N., Safronova, T.V., Lukin, E.S.: Calcium phosphate based ceramic with a resorbable phase and low sintering temperature. Glas. Ceram. 64(7–8), 238–243 (2007)CrossRefGoogle Scholar
  35. 35.
    Medveckŷ, Ľ., Štulajterova, R., Briančin, J.: Study of controlled tetracycline release from porous calcium phosphate/polyhydroxybutyrate composites. Chem. Pap. 61(6), 477–484 (2007)CrossRefGoogle Scholar
  36. 36.
    Barros, B.S., de Oliveira, R.S., Kulesza, J., Melo, V.R.M., Melo, D.M.A., Alves, S.: Ca3-xAl2O6:xEu3+ nanophosphors: fast synthesis and photophysical properties. J. Phys. Chem. Solids. 78, 90–94 (2015)CrossRefGoogle Scholar
  37. 37.
    Zhang, D., Pan, X., Yu, H., Zhai, Y.: Mineral transition of calcium aluminate clinker during high-temperature sintering with low-lime dosage. J. Mater. Sci. Technol. 31, 1244–1250 (2015)CrossRefGoogle Scholar
  38. 38.
    Mercury, J.M.R., de Aza, A.H., Pena, P.: Synthesis of CaAl2O4 from powders: particle size effect. J. Eur. Ceram. Soc. 25, 3269–3279 (2005)CrossRefGoogle Scholar
  39. 39.
    de Oliveira, I.R., de Andrade, T.L., Parreira, R.M., Jacobovitz, M., Pandolfelli, V.C.: Characterization of calcium aluminate cement phases when in contact with simulated body fluid. Mater. Res. 18(2), 382–389 (2015)CrossRefGoogle Scholar
  40. 40.
    Yuan, X., Xu, Y.B., He, Y.: Synthesis of Ca3Al2O6 via citric acid precursor. Mater. Sci. Eng. A. 447, 142–145 (2007)CrossRefGoogle Scholar
  41. 41.
    Steele, F.A., Davey, W.P.: The crystal structure of tricalcium aluminate. J. Am. Chem. Soc. 51(8), 2283–2293 (1929)CrossRefGoogle Scholar
  42. 42.
    Mondal, P., Jeffery, J.W.: The crystal structure of tricalcium aluminate, Ca3Al2O6. Acta Crystallogr. B. 31, 689–697 (1975)CrossRefGoogle Scholar
  43. 43.
    Liu, W., Chang, J.: Setting properties and biocompability of dicalcium silicate with varying additions of tricalcium aluminate. J. Biomater. Appl. 27(2), 171–178 (2011)CrossRefGoogle Scholar
  44. 44.
    Yuan, X., Xu, Y., He, Y.: Synthesis of CaAl4O7 via citric acid precursor. J. Alloys Compd. 441, 251–254 (2007)CrossRefGoogle Scholar
  45. 45.
    Suzuki, Y., Ohji, T.: Anisotropic thermal expansion of calcium dialuminate (CaAl4O7) simulated by molecular dynamics. Ceram. Int. 30, 57–61 (2004)CrossRefGoogle Scholar
  46. 46.
    Palchesko, R.N., McGowan, K.A., Gawalt, E.S.: Surface immobilization of active vancomycin on calcium aluminum oxide. Mater. Sci. Eng. C. 31, 637–642 (2011)CrossRefGoogle Scholar
  47. 47.
    Palchesko, R.N., Buckholtz, G.A., Romeo, J.D., Gawalt, E.S.: Co-immobilization of active antibiotics and cell adhesion peptides on calcium based biomaterials. Mater. Sci. Eng. C. 40, 398–406 (2014)CrossRefGoogle Scholar
  48. 48.
    Lazic, B., Krüger, H., Kahlenberg, V., Konzett, J., Kaindl, R.: Incommensurate structure of Ca2Al2O5 at high temperatures—structure investigation and Raman spectroscopy. Acta Crystallogr. B. 64(4), 417–425 (2008)CrossRefGoogle Scholar
  49. 49.
    Kahlenberg, V., Fischer, R.X., Shaw, C.S.J.: Rietveld analysis of dicalcium aluminate (Ca2Al2O5)—a new high pressure phase with the Brownmillerite-type structure. Am. Mineral. 85, 1061–1065 (2000)CrossRefGoogle Scholar
  50. 50.
    Kojitani, H., Wakabayashi, Y., Tejima, Y., Kato, C., Haraguchi, M., Akaogi, M.: High-pressure phase relations in Ca2AlSiO5.5 and energetics of perovskite-related compounds with oxygen defects in the Ca2Si2O6–Ca2Al2O5 join. Phys. Earth Planet. Inter. 173, 349–353 (2009)CrossRefGoogle Scholar
  51. 51.
    Guidara, A., Chaari, K., Bouaziz, J.: Elaboration and characterization of alumina-fluorapatite composites. J. Biomater. Nanobiotechnol. 2, 103–113 (2011)CrossRefGoogle Scholar
  52. 52.
    Xu, P., Zhou, Z., Zhao, C., Cheng, Z.: Catalytic performance of Ni/CaO-Ca5Al6O14 bifunctional catalyst extrudate in sorption-enhanced steam methane reforming. Catal. Today. 259, 347–353 (2016)CrossRefGoogle Scholar
  53. 53.
    Chen, X., Yang, L., Zhou, Z., Cheng, Z.: Core-shell structured CaO-Ca9Al6O18@Ca5Al6O14/Ni bifunctional material for sorption-enhanced steam methane reforming. Chem. Eng. Sci. 163, 114–122 (2017)CrossRefGoogle Scholar
  54. 54.
    Cao, R., Zhang, F., Cao, C., Yu, X., Liang, A., Guo, S., Xue, H.: Synthesis and luminescence properties of CaAl2O4:Mn4+ phosphor. Opt. Mater. 38, 53–56 (2014)CrossRefGoogle Scholar
  55. 55.
    Cui, T., Ma, P., Sheng, Y., Zheng, K., Zhou, X., Xu, C., Zou, H., Song, Y.: Preparation of CaAl2O4:Eu2+, Nd3+ and SrAl2O4:Eu2+, Dy3+ long after glow luminescent materials using oil shale ash. Opt. Mater. 67, 84–90 (2017)CrossRefGoogle Scholar
  56. 56.
    Szczerba, J., Madej, D., Śniezek, E., Prorok, R.: The application of DTA and TG methods to investigate the non-crystalline hydration products of CaAl2O4 and Ca7ZrAl6O18 compounds. Thermochim. Acta. 567, 40–45 (2013)CrossRefGoogle Scholar
  57. 57.
    Rodríguez, M.A., Aguilar, C.L., Aghayan, M.A.: Solution combustion synthesis and sintering behavior of CaAl2O4. Ceram. Int. 38, 395–399 (2012)CrossRefGoogle Scholar
  58. 58.
    Iftekhar, S., Grins, J., Svensson, G., Lööf, J., Jarmar, T., Botton, G.A., Andrei, C.M., Engqvist, H.: Phase formation of CaAl2O4 from CaCO3-Al2O3 powder mixtures. J. Eur. Ceram. Soc. 28, 747–756 (2008)CrossRefGoogle Scholar
  59. 59.
    Kumar, P.N., Ferreira, J.M.F., Kannan, S.: Phase transition mechanisms involved in the formation of structurally stable β-Ca3(PO4)2-α-Al2O3 composites. J. Eur. Ceram. Soc. 37, 2953–2963 (2017)CrossRefGoogle Scholar
  60. 60.
    Lööf, J., Svahn, F., Jarmar, T., Engqvist, H., Pameijer, C.H.: A comparative study of the bioactivity of three materials for dental applications. Dent. Mater. 24, 653–659 (2008)CrossRefGoogle Scholar
  61. 61.
    Acuña-Gutiérrez, I.O., Escobedo-Bocardo, J.C., Almanza-Robles, J.M., Cortés-Hernández, D.A., Saldívar-Ramírez, M.M.G., Reséndiz-Hernández, P.J., Zugasti-Cruz, A.: Development of LiCl-containing calcium aluminate cement for bone repair and remodeling applications. Mater. Sci. Eng. C. 70, 357–363 (2017)CrossRefGoogle Scholar
  62. 62.
    Viswanath, B., Ravishankar, N.: Interfacial reactions in hydroxyapatite/alumina nanocomposites. Scr. Mater. 55, 863–866 (2006)CrossRefGoogle Scholar
  63. 63.
    Evis, Z., Doremus, R.H.: Effect of AlF3, CaF2 and MgF2 on hot-pressed hydroxyapatite-nanophase alpha-alumina composites. Mater. Res. Bull. 43, 2643–2651 (2008)CrossRefGoogle Scholar
  64. 64.
    Zhang, C., Zhang, X., Liu, C., Sun, K., Yuan, J.: Nano-alumina/hydroxyapatite composite powders prepared by in-situ chemical precipitation. Ceram. Int. 42, 279–285 (2016)CrossRefGoogle Scholar
  65. 65.
    Radha, G., Balakumar, S., Venkatesan, B., Vellaichamy, E.: Evaluation of hemocompatibility and in vitro immersion on microwave-assisted hydroxyapatite-alumina nanocomposites. Mater. Sci. Eng. C. 50, 143–150 (2015)CrossRefGoogle Scholar
  66. 66.
    Epure, L.M., Dimitrievska, S., Merhi, Y., Yahia, L.H.: The effect of varying Al2O3 percentage in hydroxyapatite/Al2O3 composite materials: morphological, chemical and cytotoxic evaluation. J. Biomed. Mater. Res. A. 83A(4), 1009–1023 (2007)CrossRefGoogle Scholar
  67. 67.
    Evis, Z.: Al+3 doped nano-hydroxyapatites and their sintering characteristics. J. Ceram. Soc. Jpn. 114(11), 1001–1004 (2006)CrossRefGoogle Scholar
  68. 68.
    Ali, M.M., Agarwaland, S.K., Handoo, S.K.: Diffusion studies information and sintering of CaAl2O4 and BaAl2O4: a comparative evaluation. Cem. Concr. Res. 27(7), 979–982 (1997)CrossRefGoogle Scholar
  69. 69.
    Zyman, Z., Tkachenko, M., Epple, M., Polyakov, M., Naboka, M.: Magnesium-substituted hydroxyapatite ceramics. Mater. Werkst. 37(6), 474–477 (2006)CrossRefGoogle Scholar
  70. 70.
    Guo, H., Khor, K.A., Boey, Y.C., Miao, X.: Laminated and functionally graded hydroxyapatite/yttria stabilized tetragonal zirconia composites fabricated by spark plasma sintering. Biomaterials. 24, 667–675 (2003)CrossRefGoogle Scholar
  71. 71.
    Li, S., Izui, H., Okano, M.: Densification, microstructure, and behavior of hydroxyapatite ceramics sintered by using spark plasma sintering. J. Eng. Mater. Technol. 130, 031012-1–031012-7 (2008)Google Scholar
  72. 72.
    Halouani, R., Bernache-Assolant, D., Champion, E., Ababou, A.: Microstructure and related mechanical properties of hot pressed hydroxyapatite ceramics. J. Mater. Sci. Mater. Med. 5, 563–568 (1994)CrossRefGoogle Scholar
  73. 73.
    Aizawa, M., Hanazawa, T., Itatani, K., Howell, F.S., Kishioka, A.: Characterization of hydroxyapatite powders prepared by ultrasonic spray-pyrolysis technique. J. Mater. Sci. 34, 2865–2873 (1992)CrossRefGoogle Scholar
  74. 74.
    Yoshida, H., Kim, B.N., Son, H.W., Han, Y.H., Kim, S.: Superplastic deformation of transparent hydroxyapatite. Scr. Mater. 69, 155–158 (2013)CrossRefGoogle Scholar
  75. 75.
    Gu, Y.W., Loh, N.H., Khor, K.A., Tor, S.B., Cheang, P.: Spark plasma sintering of hydroxyapatite powders. Biomaterials. 23, 37–43 (2002)CrossRefGoogle Scholar
  76. 76.
    Lopes, M.A., Monteiro, F.J., Santos, J.D.: Glass-reinforced hydroxyapatite composites: secondary phase proportions and densification effects on biaxial bending strength. J. Biomed. Mater. Res. A. 48(5), 734–740 (1999)CrossRefGoogle Scholar
  77. 77.
    Wang, T., Dorner-Reisel, A., Müller, E.: Thermogravimetric and thermokinetic investigation of the dehydroxylation of a hydroxyapatite powder. J. Eur. Ceram. Soc. 24, 693–698 (2004)CrossRefGoogle Scholar
  78. 78.
    Ślósarczyk, A., Klisch, M., Błaẑewicz, M., Piekarczyk, J., Stobierski, L., Rapacz-Kmita, A.: Hot pressed hydroxyapatite-carbon fibre composites. J. Eur. Ceram. Soc. 20, 1397–1402 (2000)CrossRefGoogle Scholar
  79. 79.
    Fanovich, M.A., Lȯpez, J.M.P.: Influence of temperature and additives on the microstructure and sintering behaviour of hydroxyapatite with different Ca/P ratios. J. Mater. Sci. Mater. Med. 9, 53–60 (1998)CrossRefGoogle Scholar
  80. 80.
    Zayman, Z.Z., Ivanov, I.G., Glushko, V.I.: Possibilities for strengthening hydroxyapatite ceramics. J. Biomed. Mater. Res. 46(1), 73–79 (1999)CrossRefGoogle Scholar
  81. 81.
    Raynaud, S., Champion, E., Bernache-Assollant, D.: Calcium phosphate apatites with variable Ca/P atomic ratio II. Calcination and sintering. Biomaterials. 23, 1073–1080 (2002)CrossRefGoogle Scholar
  82. 82.
    Arita, I.H., Wilkinson, D.S., Mondragón, M.A., Castaño, V.M.: Chemistry and sintering behaviour of thin hydroxyapatite ceramics with controlled porosity. Biomaterials. 16, 403–408 (1995)CrossRefGoogle Scholar
  83. 83.
    Deville, S., Saiz, E., Tomsia, A.P.: Freeze casting of hydroxyapatite scaffolds for bone tissue engineering. Biomaterials. 27, 5480–5489 (2006)CrossRefGoogle Scholar
  84. 84.
    Ruys, A.J., Wei, M., Sorrell, C.C., Dickson, M.R., Brandwood, A., Milthorpe, B.K.: Sintering effects on the strength of hydroxyapatite. Biomaterials. 16, 409–415 (1995)CrossRefGoogle Scholar
  85. 85.
    Miao, X., Chen, Y., Guo, H., Khor, K.A.: Spark plasma sintered hydroxyapatite-yttria stabilized zirconia composites. Ceram. Int. 30, 1793–1796 (2004)CrossRefGoogle Scholar
  86. 86.
    Wang, X., Fan, H., Xiao, Y., Zhang, X.: Fabrication and characterization of porous hydroxyapatite/β-tricalcium phosphate ceramics by microwave sintering. Mater. Lett. 60, 455–458 (2006)CrossRefGoogle Scholar
  87. 87.
    Kahlenberg, V., Fischer, R.X., Shaw, C.S.J.: High-pressure Ca4Al6O13: an example of a calcium aluminate with three different types of coordination polyhedra for aluminum. Am. Mineral. 85, 1492–1496 (2000)CrossRefGoogle Scholar
  88. 88.
    Silva, V.V., Lameiras, F.S., Domingues, R.Z.: Microstructural and mechanical study of zirconia-hydroxyapatite (ZH) composite ceramics for biomedical applications. Compos. Sci. Technol. 61, 301–310 (2001)CrossRefGoogle Scholar
  89. 89.
    Ślósarczyk, A., Białoskórski, J.: Hardness and fracture toughness of dense calcium-phosphate-based materials. J. Mater. Sci. Mater. Med. 9, 103–108 (1998)CrossRefGoogle Scholar
  90. 90.
    Hoepfner, T.P., Case, E.D.: The influence of the microstructure on the hardness of sintered hydroxyapatite. Ceram. Int. 29, 699–706 (2003)CrossRefGoogle Scholar
  91. 91.
    Chiba, A., Kimura, S., Raghukandan, K., Morizono, Y.: Effect of alumina addition on hydroxyapatite biocomposites fabricated by underwater-shock compaction. Mater. Sci. Eng. A. 350, 179–183 (2003)CrossRefGoogle Scholar
  92. 92.
    Lee, B.T., Shin, N.Y., Han, J.K., Song, H.Y.: Microstructures and fracture characteristics of spark plasma-sintered Hap-5 vol.% Ag composites. Mater. Sci. Eng. A. 429, 348–352 (2006)CrossRefGoogle Scholar
  93. 93.
    Ruan, J.M., Zou, J.P., Zhou, Z.C.: Hydroxyapatite-316L stainless steel fibre composite biomaterials fabricated by hot pressing. Powder Metall. 49(1), 62–65 (2006)CrossRefGoogle Scholar
  94. 94.
    Khalil, K.A., Kim, H.Y., Kim, S.W., Kim, K.W.: Observation of toughness improvement of the hydroxyapatite bioceramics densified using high-frequency induction heat sintering. Int. J. Appl. Ceram. Technol. 4(1), 30–37 (2007)CrossRefGoogle Scholar
  95. 95.
    Bakshi, S.R., Musaramthota, V., Lahiri, D., Singh, V., Seal, S., Agarwal, A.: Spark plasma sintered tantalum carbide: effect of pressure and nano-boron carbide addition on microstructure and mechanical properties. Mater. Sci. Eng. A. 528, 1287–1295 (2011)CrossRefGoogle Scholar
  96. 96.
    Thangamani, N., Chinnakali, K., Gnanam, F.D.: The effect of powder processing on densification, microstructure and mechanical properties of hydroxyapatite. Ceram. Int. 28, 355–362 (2002)CrossRefGoogle Scholar
  97. 97.
    Kobayashi, S., Kawai, W., Wakayama, S.: The effect of pressure during sintering on the strength and the fracture toughness of hydroxyapatite ceramics. J. Mater. Sci. Mater. Med. 17, 1089–1093 (2006)CrossRefGoogle Scholar
  98. 98.
    Veljović, D., Vuković, G., Steins, I., Palcevskis, E., Uskoković, P.S., Petrović, R., Janaćković, D.: Improvement of the mechanical properties of spark plasma sintered HAp bioceramics by decreasing the grain size and by adding multi-walled carbon nanotubes. Sci. Sinter. 45, 233–243 (2013)CrossRefGoogle Scholar
  99. 99.
    Gautier, S., Champion, E., Bernache-Assollant, D.: Toughening characterization in alumina platelets-hydroxyapatite matrix composites. J. Mater. Sci. Mater. Med. 10, 533–540 (1999)CrossRefGoogle Scholar
  100. 100.
    Martin, R.I., Brown, P.W.: Mechanical properties of hydroxyapatite formed at physiological temperature. J. Mater. Sci. Mater. Med. 6, 138–143 (1995)CrossRefGoogle Scholar
  101. 101.
    Will, J., Melcher, R., Treul, C., Travitzky, N., Kneser, U., Polykandriotis, E., Horch, R., Greil, P.: Porous ceramic bone scaffolds for vascularized bone tissue regeneration. J. Mater. Sci. Mater. Med. 19, 2781–2790 (2008)CrossRefGoogle Scholar
  102. 102.
    Rodríguez-Lorenzo, L.M., Vallet-Regí, M., Ferreira, J.M.F.: Fabrication of hydroxyapatite bodies by uniaxial pressing from a precipitated powder. Biomaterials. 22, 583–588 (2001)CrossRefGoogle Scholar
  103. 103.
    Hannora, A.E.: Preparation and characterization of hydroxyapatite/alumina nanocomposites by high-energy vibratory ball milling. J. Ceram. Sci. Technol. 5(4), 293–298 (2014)Google Scholar
  104. 104.
    Gu, Y.W., Khor, K.A., Cheang, P.: Bone-like apatite layer formation on hydroxyapatite prepared by spark plasma sintering (SPS). Biomaterials. 25, 4127–4134 (2004)CrossRefGoogle Scholar
  105. 105.
    Yasuda, H.Y., Mahara, S., Terashita, N., Umakoshi, Y.: Preparation of porous hydroxyapatite/α-tricalcium phosphate composites by a colloidal process. Mater. Trans. 43(6), 1332–1335 (2002)CrossRefGoogle Scholar
  106. 106.
    Chumnanklang, R., Panyathanmaporn, T., Sitthiseripratip, K., Suwanprateeb, J.: 3D printing of hydroxyapatite: effect of binder concentration in pre-coated particle on part strength. Mater. Sci. Eng. C. 27, 914–921 (2007)CrossRefGoogle Scholar
  107. 107.
    Kothapalli, C., Wei, M., Vasiliev, A., Shaw, M.T.: Influence of temperature and concentration on the sintering behavior and mechanical properties of hydroxyapatite. Acta Mater. 52, 5655–5663 (2004)CrossRefGoogle Scholar
  108. 108.
    Aminzare, M., Eskandari, A., Baroonian, M.H., Berenov, A., Hesabi, Z.R., Taheri, M., Sadrnezhaad, S.K.: Hydroxyapatite nanocomposites: synthesis, sintering and mechanical properties. Ceram. Int. 39, 2197–2206 (2013)CrossRefGoogle Scholar
  109. 109.
    Zhang, J., Maeda, M., Kotobuki, N., Hirose, M., Ohgushi, H., Jiang, D., Iwasa, M.: Aqueous processing of hydroxyapatite. Mater. Chem. Phys. 99, 398–404 (2006)CrossRefGoogle Scholar
  110. 110.
    Juang, H.Y., Hon, M.H.: The effect of calcination temperature on the behaviour of HA powder for injection moulding. Ceram. Int. 23, 383–387 (1997)CrossRefGoogle Scholar
  111. 111.
    Chen, B., Zhang, Z., Zhang, J., Dong, M., Jiang, D.: Aqueous gel-casting of hydroxyapatite. Mater. Sci. Eng. A. 435-436, 198–203 (2006)CrossRefGoogle Scholar
  112. 112.
    Chern Lin, J.H., Lin, H.J., Ding, S.J., Ju, C.P.: Characterization of immersed hydroxyapatite-bioactive glass coatings in Hank’s solution. Mater. Chem. Phys. 64, 229–240 (2000)CrossRefGoogle Scholar
  113. 113.
    Hae-Won, K., Young-Hag, K., Seung-Beom, S., Hyoun-Ee, K.: Properties of fluoridated hydroxyapatite-alumina biological composites densified with addition of CaF2. Mater. Sci. Eng. C. 23, 515–521 (2003)CrossRefGoogle Scholar
  114. 114.
    Rouahi, M., Champion, E., Gallet, O., Jada, A., Anselme, K.: Physico-chemical characteristics and protein adsorption potential of hydroxyapatite particles: influence on in vitro biocompatibility of ceramics after sintering. Colloids Surf. B: Biointerfaces. 47, 10–19 (2006)CrossRefGoogle Scholar
  115. 115.
    Guo, X., Gough, J.E., Xiao, P., Liu, J., Shen, Z.: Fabrication of nanostructured hydroxyapatite and analysis of human osteoblastic cellular response. J. Biomed. Mater. Res. 82A(4), 1022–1032 (2007)CrossRefGoogle Scholar
  116. 116.
    Lin, F.H., Liao, C.J., Chen, K.S., Sun, J.S., Lin, C.P.: Petal-like apatite formed on the surface of tricalcium phosphate ceramic after soaking in distilled water. Biomaterials. 22, 2981–2992 (2001)CrossRefGoogle Scholar
  117. 117.
    Kon, M., Ishikawa, K., Miyamoto, Y., Asaoka, K.: Development of calcium phosphate based functional gradient bioceramics. Biomaterials. 16, 709–714 (1995)CrossRefGoogle Scholar
  118. 118.
    Santos, J.D., Knowles, J.C., Reis, R.L., Monteiro, F.J., Hastings, G.W.: Microstructural characterizations of glass-reinforced hydroxyapatite composites. Biomaterials. 15(1), 5–10 (1994)CrossRefGoogle Scholar
  119. 119.
    Xin, R., Leng, Y., Chen, J., Zhang, Q.: A comparative study of calcium phosphate formation on bioceramics in vitro and in vivo. Biomaterials. 26, 6477–6486 (2005)CrossRefGoogle Scholar
  120. 120.
    Ślósarczyk, A., Piekarczyk, J.: Ceramic materials on the basis of hydroxyapatite and tricalcium phosphate. Ceram. Int. 25, 561–565 (1999)CrossRefGoogle Scholar
  121. 121.
    Evis, Z., Tahmasebifar, A.: Structural and mechanical characteristics of hydroxyapatite and tricalcium phosphates doped with Al+3 and F ions. J. Ceram. Process. Res. 14, 549–556 (2013)Google Scholar
  122. 122.
    Suchanek, W., Yashima, M., Kakihana, M., Yoshimura, M.: Hydroxyapatite ceramics with selected sintering additives. Biomaterials. 18, 923–933 (1997)CrossRefGoogle Scholar

Copyright information

© Australian Ceramic Society 2019

Authors and Affiliations

  1. 1.Technology Faculty, Metallurgy and Materials EngineeringMarmara UniversityIstanbulTurkey
  2. 2.National Defense UniversityIstanbulTurkey

Personalised recommendations