Structural, piezoelectric, and dielectric properties of PZT-based ceramics without excess lead oxide

  • Maliha Siddiqui
  • Julie Juliewatty Mohamed
  • Zainal Arifin AhmadEmail author


A number of previous research have been done on the excess PbO to improve the material properties of PZT-based ceramics. This study takes a step further by studying the consequences of controlled addition of PbO on the structural, piezoelectric, and dielectric properties of Pb(Zr1-xTix)O3 ceramics (PZT-based ceramics). In order to draw qualitative comparisons between their material properties, pure or undoped PZT [Pb(Zr0.52Ti0.48)O3] and doped PZTs (PSZT [Pb0.95Sr0.05(Zr0.52Ti0.48)O3], PLZT [Pb0.98La0.02(Zr0.52Ti0.48)O3], and PLSZT [Pb0.93La0.02Sr0.05(Zr0.52Ti0.48)O3]) were studied. The compositions were prepared through high-energy ball milling in a way to avoid calcination using controlled addition of PbO. After milling, pellets were formed from the mixtures, which were then sintered at 1150 °C. The phase analysis of the sintered mixtures using XRD technique revealed the formation of a single perovskite phase in all the developed ceramics. All the undoped and doped ceramics have relative density of > 90%. La-doped PZT had the best piezoelectric properties with d33 of 372 pC/N and kp of 0.510; in addition, better dielectric properties, i.e., ɛr of 1269 and tan δ of 0.050, were found. This good performance of the La-doped PZT is related to its high density (7.6 g/cm3) and low porosity (0.154), which was clearly observed in its microstructure.


PZT Piezoelectric La-doped PZT Sr-doped PZT Dielectric 



The authors acknowledge the School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, for providing piezoelectric testing facilities.

Funding information

This work is financially supported under the university research grant (Universiti Sains Malaysia RUI 1001/PBAHAN/814184).


  1. 1.
    Haertling, G.H.: Ferroelectric ceramics: history and technology. J Am Ceram Soc. 82, 797–818 (1999)CrossRefGoogle Scholar
  2. 2.
    Dave Waller, J. C., Gururaja, T. R.: Requirements of piezoelectric materials for medical ultrasound transducers. Applications of Ferroelectrics, 1996. ISAF ‘96’. In: Proceedings of the Tenth IEEE International Symposium on, 1996Google Scholar
  3. 3.
    Park, S.-E., Shrout, T.R.: Characteristics of relaxor-based piezoelectric single crystals for ultrasonic transducers. IEEE Trans Ultrason Ferroelectr Freq Control. 44, 1140–1147 (1997)CrossRefGoogle Scholar
  4. 4.
    Shung, K.K., Cannata, J.M., Zhou, Q.F.: Piezoelectric materials for high frequency medical imaging applications: a review. J Electroceram. 19, 141–147 (2007)CrossRefGoogle Scholar
  5. 5.
    Tressler, J.F., Alkoy, S., Newnham, R.E.: Piezoelectric sensors and sensor materials. J Electroceram. 2, 257–272 (1998)CrossRefGoogle Scholar
  6. 6.
    King, T.G., Preston, M.E., Murphy, B.J.M., Cannell, D.S.: Piezoelectric ceramic actuators: a review of machinery applications. Precis Eng. 12, 131–136 (1990)CrossRefGoogle Scholar
  7. 7.
    Kenji Uchino, S.T.: Multilayer ceramic actuators. Curr Opinion Solid State Mater Sci. 1, 698–705 (1996)CrossRefGoogle Scholar
  8. 8.
    Prabu, M., Shameem Banu, I.B., Gobalakrishnan, S., Chavali, M.: Electrical and ferroelectric properties of undoped and La-doped PZT (52/48) electroceramics synthesized by sol–gel method. J Alloys Compd. 551, 200–207 (2013)CrossRefGoogle Scholar
  9. 9.
    Kong, L.B., Ma, J., Zhu, W., Tan, O.K.: Preparation and characterization of PLZT ceramics using high-energy ball milling. J Alloys Compd. 322, 290–297 (2001)CrossRefGoogle Scholar
  10. 10.
    Banerjee, A., Bandyopadhyay, A., Bose, S.: Influence of La2O3, SrO, and ZnO addition on PZT. J Am Ceram Soc. 89, 1594–1600 (2006)CrossRefGoogle Scholar
  11. 11.
    Dambekalne, M., Antonova, M., Livinsh, M., Garbarz-Glos, B., Smiga, W., Sternberg, A.: PLZT—synthesis, sintering and ceramics microstructure. J Eur Ceram Soc. 26, 2963–2966 (2006)CrossRefGoogle Scholar
  12. 12.
    Praveenkumar, B., Kumar, H.H., Kharat, D.K., Murty, B.S.: Investigation and characterization of La-doped PZT nanocrystalline ceramic prepared by mechanical activation route. Mater Chem Phys. 112, 31–34 (2008)CrossRefGoogle Scholar
  13. 13.
    Cui, Y., Zhao, J., Zhang, L., Xia, J., Dong, W., Wang, L.: Preparation and properties of Pb1-xSrx(Zr0.53Ti0.47)O3 thin films by sol-gel method. Ferroelectrics. 405, 255–261 (2010)CrossRefGoogle Scholar
  14. 14.
    Kozielski, L., Adamczyk, M., Pawełczyk, M.: Effect of Sr doping on phase transition and electric behaviour of (Pb0.70Sr0.30)(Zr0.70Ti0.30)O3 ceramics. Phase Transit. 83, 790–799 (2010)CrossRefGoogle Scholar
  15. 15.
    Laishram, R., Thakur, O.P., Bhattacharya, D.K., Harsh: Dielectric and piezoelectric properties of La doped lead zinc niobate–lead zirconium titanate ceramics prepared from mechano-chemically activated powders. Mater Sci Eng B. 172, 172–176 (2010)CrossRefGoogle Scholar
  16. 16.
    Kalem, V., Çam, İ., Timuçin, M.: Dielectric and piezoelectric properties of PZT ceramics doped with strontium and lanthanum. Ceram Int. 37, 1265–1275 (2011)CrossRefGoogle Scholar
  17. 17.
    Kumar, A., Mishra, S.K.: Effects of Sr2+ substitution on the structural, dielectric, and piezoelectric properties of PZT-PMN ceramics. Int J Miner Metall Mater. 21, 175–180 (2014)CrossRefGoogle Scholar
  18. 18.
    Prasad Bag, S., Her, J.-L., Pan, T.-M.: Impact of Sr-doping on structural and electrical properties of Pb(Zr0.52Ti0.48)O3 thin films on RuO2 electrodes. Ceram Int. 43, 9806–9814 (2017)CrossRefGoogle Scholar
  19. 19.
    Shukla, A.K., Agrawal, V.K., Das, I.M.L., Singh, J., Srivastava, S.L.: Dielectric response of PLZT ceramic x/57/43 across ferroelectric- paraelectric phase transition. Bull Mater Sci. 34, 133–142 (2011)CrossRefGoogle Scholar
  20. 20.
    Matsuo, Y., Sasaki, H.: Formation of lead zirconate-lead titanate solid solutions. J Am Ceram Soc. 48, 289–291 (1965)CrossRefGoogle Scholar
  21. 21.
    Hao, X., Zhai, J., Kong, L.B., Xu, Z.: A comprehensive review on the progress of lead zirconate-based antiferroelectric materials. Prog Mater Sci. 63, 1–57 (2014)CrossRefGoogle Scholar
  22. 22.
    Song, B.M., Kim, D.Y., Shirasaki, S.I., Yamamura, H.: Effect of excess PbO on the densification of PLZT ceramics. J Am Ceram Soc. 72, 833–836 (1989)CrossRefGoogle Scholar
  23. 23.
    Kong, L.B., Zhang, T., Ma, J., Boey, F.: Progress in synthesis of ferroelectric ceramic materials via high-energy mechanochemical technique. Prog Mater Sci. 53, 207–322 (2008)CrossRefGoogle Scholar
  24. 24.
    Lee, S.E., Xue, J.M., Wan, D.M., Wang, J.: Effect of mechanical activation on the sintering and dielectric properties of oxide- derived PZT. Acta Mater. 47, 2633–2639 (1999)CrossRefGoogle Scholar
  25. 25.
    Kong, L.B., Zhu, W., Tan, O.K.: Preparation and characterization of Pb(Zr0.52Ti0.48)O3 ceramics from high-energy ball milling powders. Mater Lett. 42, 232–239 (2000)CrossRefGoogle Scholar
  26. 26.
    Brankovic, Z., Brankovic, G., Varela, J.A.: PZT ceramics obtained from mechanochemically synthesized powders. J Mater Sci Mater Electron. 14, 37–41 (2003)CrossRefGoogle Scholar
  27. 27.
    Parashar, S.K.S., Choudhary, R.N.P., Murty, B.S.: Electrical propeties of Gd-doped PZT nanoceramic synthesized by high-energy ball milling. Mater Sci Eng B. 110, 58–63 (2004)CrossRefGoogle Scholar
  28. 28.
    Garg, A., Agrawal, D.: Effect of net PbO content on mechanical and electromechanical properties of lead zirconate titanate ceramics. Mater Sci Eng B. 60, 46–50 (1999)CrossRefGoogle Scholar
  29. 29.
    Devi, P., Sharma, R., Srivastava, A., Kulshreshtha, O., Chamola, A., Pal, A.: Effect of Sr on structural and dielectric properties of lead lanthanum zirconate titanate perovskite ceramics. Int J Educ Plan Admin. 2, 97–108 (2012)Google Scholar
  30. 30.
    Noheda, B.: Structure and high-piezoelectricity in lead oxide solid solutions. Curr Opinion Solid State Mater Sci. 6, 27–34 (2002)CrossRefGoogle Scholar
  31. 31.
    Kozielski, L., Adamczyk, M., Erhart, J., Pawełczyk, M.: Application testing of Sr doping effect of PZT ceramics on the piezoelectric transformer gain and efficiency proposed for MEMS actuators driving. J Electroceram. 29, 133–138 (2012)CrossRefGoogle Scholar
  32. 32.
    Kour, P., Pradhan, S.K., Kumar, P., Sinha, S.K., Kar, M.: Effect of Sr doping on electrical properties of lead zirconate titanate nanoceramics. Ferroelectrics. 517, 104–112 (2017)CrossRefGoogle Scholar
  33. 33.
    Pdungsap, L., Udomkan, N., Boonyuen, S., Winotai, P.: Optimized conditions for fabrication of La-dopant in PZT ceramics. Sensors Actuators A Phys. 122, 250–256 (2005)CrossRefGoogle Scholar

Copyright information

© Australian Ceramic Society 2019

Authors and Affiliations

  1. 1.Structural Materials Niche Area, School of Materials and Mineral Resources EngineeringUniversiti Sains Malaysia, Engineering CampusNibong TebalMalaysia
  2. 2.Department of Fundamental Science, Technology and Engineering, Faculty of Bioengineering and Technology, Jeli CampusUniversiti Malaysia KelantanJeliMalaysia

Personalised recommendations