Advertisement

Modeling matrix multi-fracture in SiC/SiC ceramic-matrix composites at elevated temperatures

  • Li LongbiaoEmail author
Research

Abstract

In this paper, the matrix multi-fracture of SiC/SiC ceramic-matrix composites (CMCs) is investigated using the critical matrix strain energy (CMSE) criterion. The BHE shear-lag model is used to analyze the micro-stress field of the damaged composite, and the fracture mechanics method and the CMSE criterion are adopted to determine the fiber/matrix interface debonded length and matrix multi-fracture density. The temperature-dependent fiber/matrix interface shear stress, Young’s modulus of the matrix, the matrix fracture energy, and the fiber/matrix interface debonded energy are considered in the micro-stress field analysis, fiber/matrix interface debonding criterion, and matrix multi-fracture model. The effects of fiber volume fraction, fiber/matrix interface shear stress, fiber/matrix interface frictional coefficient, fiber/matrix interface debonded energy, matrix fracture energy, and temperature on the matrix multi-fracture of SiC/SiC composite are discussed. When the fiber volume fraction and matrix fracture energy increase, the first matrix cracking stress and matrix saturation cracking stress increase; when the fiber/matrix interface shear stress and interface frictional coefficient increase, the first matrix cracking stress, saturation matrix cracking stress, and saturation matrix cracking density increase with the decrease of the fiber/matrix interface debonded length; when the fiber/matrix interface debonded energy increases, the saturation matrix cracking stress decreases and the saturation matrix cracking density increases due to the decrease of fiber/matrix interface debonding ratio. The experimental matrix multi-fracture and fiber/matrix interface debonding curves of unidirectional SiC/SiC composite at elevated temperatures are predicted. The predicted results agree with experimental data, which proves the efficiency of the developed matrix multi-fracture model.

Keywords

Ceramic-matrix composites (CMCs) Temperature-dependent Matrix multi-cracking Interface debonding 

Notes

Funding information

The work reported here is supported by the Fundamental Research Funds for the Central Universities (Grant No. NS2016070).

References

  1. 1.
    Padture, N.P.: Advanced structural ceramics in aerospace propulsion. Nat. Mater. 15, 804–809 (2016)CrossRefGoogle Scholar
  2. 2.
    DiCarlo JA, Roode M. Ceramic composite development for gas turbine hot section components. Proceedings of the ASME Turbo Expo: Power for Land, Sea and Air, 2006; 2:221–231Google Scholar
  3. 3.
    Li, L.: Modeling first matrix cracking stress of fiber-reinforced ceramic-matrix composites considering fiber fracture. Theor. Appl. Fract. Mech. 92, 24–32 (2017)CrossRefGoogle Scholar
  4. 4.
    Choi, S.R., Gyekenyesi, J.P.: Load-rate dependency of ultimate tensile strength in ceramic matrix composites at elevated temperatures. Int. J. Fatigue. 27, 503–510 (2005)CrossRefGoogle Scholar
  5. 5.
    Liu, S., Zhang, L., Yin, X., Liu, Y., Cheng, L.: Proportional limit stress and residual thermal stress of 3D SiC/SiC composite. J. Mater. Sci. Technol. 30, 959–964 (2014)CrossRefGoogle Scholar
  6. 6.
    Sevener, K.M., Tracy, J.M., Chen, Z., Kiser, J.D., Daly, S.: Crack opening behavior in ceramic matrix composites. J. Am. Ceram. Soc. 100, 4734–4747 (2017)CrossRefGoogle Scholar
  7. 7.
    Parthasarathy, T.A., Cox, B., Surde, O., Przybyla, C., Cinibulk, M.K.: Modeling environmentally induced property degradation of SiC/BN/SiC ceramic matrix composites. J. Am. Ceram. Soc. 101, 973–997 (2018)CrossRefGoogle Scholar
  8. 8.
    Sun, Y., Singh, R.N.: The generation of multiple matrix cracking and fiber-matrix interfacial debonding in a glass composite. Acta Mater. 46, 1657–1667 (1998)CrossRefGoogle Scholar
  9. 9.
    Cheng, T., Qiao, R., Xia, Y.: A Monte Carlo simulation of damage and failure process with crack saturation for unidirectional fiber reinforced ceramic composites. Compos. Sci. Technol. 64, 2251–2260 (2004)CrossRefGoogle Scholar
  10. 10.
    Morscher, G.N., Hee, M.Y., DiCarlo, J.A.: Matrix cracking in 3D orthogonal melt-infiltration SiC/SiC composite with various Z-fiber types. J. Am. Ceram. Soc. 88, 146–153 (2005)CrossRefGoogle Scholar
  11. 11.
    Rajan, V.P., Zok, F.W.: Matrix cracking of fiber-reinforced ceramic composites in shear. J. Mech. Phys. Solids. 73, 3–21 (2014)CrossRefGoogle Scholar
  12. 12.
    Gowayed, Y., Ojard, G., Santhosh, U., Jefferson, G.: Modeling of crack density in ceramic matrix composites. J. Compos. Mater. 49, 2285–2294 (2015)CrossRefGoogle Scholar
  13. 13.
    Li, L.: Modeling for monotonic and cyclic tensile stress-strain behavior of 2D and 2.5D woven C/SiC ceramic-matrix composites. Mech. Compos. Mater. 54, 165–178 (2018)CrossRefGoogle Scholar
  14. 14.
    Li, L.: Micromechanical modeling for tensile behavior of carbon fiber-reinforced ceramic-matrix composites. Appl. Compos. Mater. 22, 773–790 (2015)CrossRefGoogle Scholar
  15. 15.
    Li, L., Song, Y., Sun, Y.: Modeling tensile behavior of cross-ply C/SiC ceramic-matrix composites. Mech. Compos. Mater. 51, 358–376 (2015)CrossRefGoogle Scholar
  16. 16.
    Li, L., Song, Y., Sun, Y.: Modeling tensile behavior of unidirectional C/SiC ceramic matrix composites. Mech. Compos. Mater. 49, 659–672 (2014)CrossRefGoogle Scholar
  17. 17.
    Guo, S., Kagawa, Y.: Tensile fracture behavior of continuous SiC fiber-reinforced SiC matrix composites at elevated temperatures and correlation to in situ constituent properties. J. Eur. Ceram. Soc. 22, 2349–2356 (2002)CrossRefGoogle Scholar
  18. 18.
    Chen, Z., Fang, G., Xie, J., Liang, J.: Experimental study of high-temperature tensile mechanical properties of 3D needled C/C-SiC composites. Mater. Sci. Eng. A. 654, 271–277 (2016)CrossRefGoogle Scholar
  19. 19.
    Guo, S., Kagawa, Y.: Effect of matrix modification on tensile mechanical behavior of Tyranno Si-Ti-C-O fiber-reinforced SiC matrix minicomposite at room and elevated temperatures. J. Eur. Ceram. Soc. 24, 3261–3269 (2004)CrossRefGoogle Scholar
  20. 20.
    Almansour, A., Maillet, E., Ramasamy, R., Morscer, G.N.: Effect of fiber content on single tow SiC minicomposite mechanical and damage properties using acoustic emission. J. Eur. Ceram. Soc. 35, 3389–3399 (2015)CrossRefGoogle Scholar
  21. 21.
    Morscher, G.N., Singh, M., Kiser, J.D., Freedman, M., Bhatt, R.: Modeling stress-dependent matrix cracking and stress-strain behavior in 2D woven SiC fiber reinforced CVI SiC composites. Compos. Sci. Technol. 67, 1009–1017 (2007)CrossRefGoogle Scholar
  22. 22.
    Aveston, J., Cooper, G.A., Kelly, A.: The Properties of Fiber Composites, Conference on Proceedings. National Physical Laboratory, pp. 15–26. IPC Science and Technology Press, Guildford (1971)Google Scholar
  23. 23.
    Budiansky, B., Hutchinson, J.W., Evans, A.G.: Matrix fracture in fiber-reinforced ceramics. J. Mech. Phys. Solids. 34, 167–189 (1986)CrossRefGoogle Scholar
  24. 24.
    Smith, C.E., Morscher, G.N., Xia, Z.H.: Monitoring damage accumulation in ceramic matrix composites using electrical resistivity. Scr. Mater. 59, 463–466 (2008)CrossRefGoogle Scholar
  25. 25.
    Morscher, G.N., Gordon, N.A.: Acoustic emission and electrical resistance in SiC-based laminate ceramic composites tested under tensile loading. J. Eur. Ceram. Soc. 37, 3861–3872 (2017)CrossRefGoogle Scholar
  26. 26.
    Simon, C., Rebillat, F., Herb, V., Camus, G.: Monitoring damage evolution of SiCf/[Si-B-C]m composites using electrical resistivity: crack density-based electromechanical modeling. Acta Mater. 124, 579–587 (2017)CrossRefGoogle Scholar
  27. 27.
    Racle, E., Godin, N., Reynaud, P., Fantozzi, G.: Fatigue lifetime of ceramic matrix composites at intermediate temperature by acoustic emission. Materials. 10, 658 (2017)CrossRefGoogle Scholar
  28. 28.
    Guo, S., Kagawa, Y.: Temperature dependence of in situ constituent properties of polymer-infiltration-pyrolysis-processed Nicalon™ SiC fiber-reinforced SiC matrix composite. J. Mater. Res. 15, 951–960 (2000)CrossRefGoogle Scholar
  29. 29.
    Reynaud, P., Douby, D., Fantozzi, G.: Effects of temperature and of oxidation on the interfacial shear stress between fibers and matrix in ceramic-matrix composites. Acta Mater. 46, 2461–2469 (1998)CrossRefGoogle Scholar
  30. 30.
    Gao, Y.C., Mai, Y., Cotterell, B.: Fracture of fiber-reinforced materials. J. Appl. Math Phys. 39, 550–572 (1988)Google Scholar
  31. 31.
    Solti, J.P., Mall, S., Robertson, D.D.: Modeling of matrix failure in ceramic matrix composites. J. Compos. Technol. Res. 19, 29–40 (1997)CrossRefGoogle Scholar
  32. 32.
    Snead, L.L., Nozawa, T., Katoh, Y., Byun, T.S., Kondo, S., Petti, D.A.: Handbook of SiC properties for fuel performance modeling. J. Nucl. Mater. 371, 329–377 (2007)CrossRefGoogle Scholar
  33. 33.
    Wang, R.Z., Li, W.G., Li, D.Y., Fang, D.N.: A new temperature dependent fracture strength model for the ZrB2-SiC composites. J. Eur. Ceram. Soc. 35, 2957–2962 (2015)CrossRefGoogle Scholar

Copyright information

© Australian Ceramic Society 2019

Authors and Affiliations

  1. 1.College of Civil AviationNanjing University of Aeronautics and AstronauticsNanjingPeople’s Republic of China

Personalised recommendations