Photocatalytic and self-cleaning properties of glazed ceramic tiles coated with TiO2 and Al-doped TiO2 thin films
Abstract
The undoped and Al-doped TiO2 coatings on glazed ceramic tiles have been prepared by sol–gel and spray coating process. The samples were heat treated at 550 °C with 15-min soaking. The coatings were characterized for microstructure, surface morphology, elemental analysis, and thickness using the grazing-incidence X-ray diffraction (GIXRD), field emission scanning electron microscope (FE-SEM), energy-dispersive X-ray spectroscopy (EDS), and scanning electron microscope (SEM), respectively. For the Al-doped TiO2 coating, only anatase phase was identified, but the undoped TiO2 coating exhibited a mix of anatase and rutile. The Al-doped TiO2 coating exhibited a homogeneous and relatively crack-free morphology, but the undoped TiO2 coating had significant cracks. The elemental analysis confirmed Ti, O, and Al in the coatings. The undoped and Al-doped TiO2 films had uniform thickness. The photocatalytic decomposition of methylene blue and the photo-induced wettability of the samples were investigated using the UV–Vis spectrophotometer and water contact angle measurement, respectively. The Al-doped TiO2 coating exhibited more efficient photocatalytic activity and hydrophilicity than the other samples after the UV irradiation.
Keywords
Al doping Photocatalytic activity Spray coating Methylene blue WettingNotes
References
- 1.Banerjee, S., Dionysiou, D.D., Pillai, S.C.: Self-cleaning applications of TiO2 by photo-induced hydrophilicity and photocatalysis. Appl Catal B Environ. 176, 396–428 (2015)Google Scholar
- 2.Murugan, K., Subasri, R., Rao, T., Gandhi, A.S., Murty, B.: Synthesis, characterization and demonstration of self-cleaning TiO2 coatings on glass and glazed ceramic tiles. Progress in Organic Coatings. 76(12), 1756–1760 (2013)Google Scholar
- 3.da Silva, A.L., Dondi, M., Hotza, D.: Self-cleaning ceramic tiles coated with Nb2O5-doped-TiO2 nanoparticles. Ceram Int. 43(15), 11986–11991 (2017)Google Scholar
- 4.Määttä, J., Piispanen, M., Kymäläinen, H.-R., Uusi-Rauva, A., Hurme, K.-R., Areva, S., Sjöberg, A.-M., Hupa, L.: Effects of UV-radiation on the cleanability of titanium dioxide-coated glazed ceramic tiles. J Eur Ceram Soc. 27(16), 4569–4574 (2007)Google Scholar
- 5.Berto, A.M.: Ceramic tiles: above and beyond traditional applications. J Eur Ceram Soc. 27(2–3), 1607–1613 (2007)Google Scholar
- 6.Petrovič, V., Ducman, V., Škapin, S.D.: Determination of the photocatalytic efficiency of TiO2 coatings on ceramic tiles by monitoring the photodegradation of organic dyes. Ceram Int. 38(2), 1611–1616 (2012)Google Scholar
- 7.Akpan, U.G., Hameed, B.H.: Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review. J Hazard Mater. 170(2–3), 520–529 (2009)Google Scholar
- 8.Kumar, S.G., Devi, L.G.: Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics. J Phys Chem A. 115(46), 13211–13241 (2011)Google Scholar
- 9.Cedillo-González, E.I., Riccò, R., Montorsi, M., Montorsi, M., Falcaro, P., Siligardi, C.: Self-cleaning glass prepared from a commercial TiO2 nano-dispersion and its photocatalytic performance under common anthropogenic and atmospheric factors. Build Environ. 71, 7–14 (2014)Google Scholar
- 10.Gupta, S.M., Tripathi, M.: A review of TiO2 nanoparticles. Chin Sci Bull. 56(16), 1639 (2011)Google Scholar
- 11.Hanaor, D.A., Sorrell, C.C.: Review of the anatase to rutile phase transformation. J Mater Sci. 46(4), 855–874 (2011)Google Scholar
- 12.Matsui, M., Akaogi, M.: Molecular dynamics simulation of the structural and physical properties of the four polymorphs of TiO2. Mol Simul. 6(4–6), 239–244 (1991)Google Scholar
- 13.Nishide, T., Sato, M., Hara, H.: Crystal structure and optical property of TiO2 gels and films prepared from Ti-edta complexes as titania precursors. J Mater Sci. 35(2), 465–469 (2000)Google Scholar
- 14.Ting, C.-C., Chen, S.-Y., Liu, D.-M.: Structural evolution and optical properties of TiO2 thin films prepared by thermal oxidation of sputtered Ti films. J Appl Phys. 88(8), 4628–4633 (2000)Google Scholar
- 15.Francisco, M.S.P., Mastelaro, V.R.: Inhibition of the anatase–rutile phase transformation with addition of CeO2 to CuO−TiO2 system: Raman spectroscopy, X-ray diffraction, and textural studies. Chem Mater. 14(6), 2514–2518 (2002)Google Scholar
- 16.Luttrell, T., Halpegamage, S., Sutter, E., Batzill, M.: Photocatalytic activity of anatase and rutile TiO2 epitaxial thin film grown by pulsed laser deposition. Thin Solid Films. 564, 146–155 (2014)Google Scholar
- 17.Luttrell, T., Halpegamage, S., Tao, J., Kramer, A., Sutter, E., Batzill, M.: Why is anatase a better photocatalyst than rutile? Model studies on epitaxial TiO2 films. Sci Rep. 4, 4043 (2014)Google Scholar
- 18.Yoganarasimhan, S., Rao, C.R.: Mechanism of crystal structure transformations. Part 3.—factors affecting the anatase-rutile transformation. Trans Faraday Soc. 58, 1579–1589 (1962)Google Scholar
- 19.Arbiol, J., Cerda, J., Dezanneau, G., Cirera, A., Peiro, F., Cornet, A., Morante, J.: Effects of Nb doping on the TiO2 anatase-to-rutile phase transition. J Appl Phys. 92(2), 853–861 (2002)Google Scholar
- 20.Rath, C., Mohanty, P., Pandey, A., Mishra, N.: Oxygen vacancy induced structural phase transformation in TiO2 nanoparticles. J Phys D Appl Phys. 42(20), 205101 (2009)Google Scholar
- 21.Yang, Y., Li, X.-j., Chen, J.-t., Wang, L.-y.: Effect of doping mode on the photocatalytic activities of Mo/TiO2. J Photochem Photobiol A Chem. 163(3), 517–522 (2004)Google Scholar
- 22.Depero, L., Marino, A., Allieri, B., Bontempi, E., Sangaletti, L., Casale, C., Notaro, M.: Morphology and microstructural properties of TiO2 nanopowders doped with trivalent Al and Ga cations. J Mater Res. 15(10), 2080–2086 (2000)Google Scholar
- 23.Lee, J.E., Oh, S.-M., Park, D.-W.: Synthesis of nano-sized Al doped TiO2 powders using thermal plasma. Thin Solid Films. 457(1), 230–234 (2004)Google Scholar
- 24.Vásquez, G.C., Peche-Herrero, M.A., Maestre, D., Alemán, B., Ramírez-Castellanos, J., Cremades, A., González-Calbet, J.M., Piqueras, J.: Influence of Fe and Al doping on the stabilization of the anatase phase in TiO2 nanoparticles. J Mater Chem C. 2(48), 10377–10385 (2014)Google Scholar
- 25.Liu, J., Sun, Q., Fu, Y., Shen, J.: Preparation and characterization of mesoporous VOx–TiO2 complex oxides for the selective oxidation of methanol to dimethoxymethane. J Colloid Interface Sci. 335(2), 216–221 (2009)Google Scholar
- 26.Okada, K., Yamamoto, N., Kameshima, Y., Yasumori, A., MacKenzie, K.J.: Effect of silica additive on the anatase-to-rutile phase transition. J Am Ceram Soc. 84(7), 1591–1596 (2001)Google Scholar
- 27.Sohrabi, H., Mozafari, A., Sajjadnejad, M., Tabaian, S., Omidvar, H.: Influence of operational parameters on the TiO2 photocatalytic degradation of methylene blue. Mater Sci Technol. 32(12), 1282–1288 (2016)Google Scholar
- 28.Reidy, D., Holmes, J., Morris, M.: The critical size mechanism for the anatase to rutile transformation in TiO2 and doped-TiO2. J Eur Ceram Soc. 26(9), 1527–1534 (2006)Google Scholar
- 29.Kumar, K.J., Raju, N.R.C., Subrahmanyam, A.: Thickness dependent physical and photocatalytic properties of ITO thin films prepared by reactive DC magnetron sputtering. Appl Surf Sci. 257(7), 3075–3080 (2011)Google Scholar
- 30.Wu, C.-Y., Lee, Y.-L., Lo, Y.-S., Lin, C.-J., Wu, C.-H.: Thickness-dependent photocatalytic performance of nanocrystalline TiO2 thin films prepared by sol–gel spin coating. Appl Surf Sci. 280, 737–744 (2013)Google Scholar
- 31.Channei, D., Inceesungvorn, B., Wetchakun, N., Ukritnukun, S., Nattestad, A., Chen, J., Phanichphant, S.: Photocatalytic degradation of methyl orange by CeO2 and Fe–doped CeO2 films under visible light irradiation. Sci Rep. 4, 5757 (2014)Google Scholar
- 32.Varma, R.S., Thorat, N., Fernandes, R., Kothari, D., Patel, N., Miotello, A.: Dependence of photocatalysis on charge carrier separation in Ag-doped and decorated TiO2 nanocomposites. Catalysis Science & Technology. 6(24), 8428–8440 (2016)Google Scholar
- 33.Pan, X., Yang, M.-Q., Fu, X., Zhang, N., Xu, Y.-J.: Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications. Nanoscale. 5(9), 3601–3614 (2013)Google Scholar
- 34.Gaya, U.I., Abdullah, A.H.: Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. J Photochem Photobiol C: Photochem Rev. 9(1), 1–12 (2008)Google Scholar
- 35.Mohamed, M.M., Al-Esaimi, M.M.: Characterization, adsorption and photocatalytic activity of vanadium-doped TiO2 and sulfated TiO2 (rutile) catalysts: degradation of methylene blue dye. J Mol Catal A Chem. 255(1–2), 53–61 (2006)Google Scholar
- 36.Liu, B., Zhao, Q., Zhao, X.: Recent progress on self-cleaning glasses and integration with other functions. In: Self-Cleaning Materials and Surfaces: a Nanotechnology Approach, pp. 57–88 (2013)Google Scholar
- 37.Kong, X., Hu, Y., Wang, X., Pan, W.: Effect of surface morphology on wettability conversion. Journal of Advanced Ceramics. 5(4), 284–290 (2016)Google Scholar