Advertisement

Superior electrical and magnetic properties of microwave-sintered NiMgCuZn nanoferrites in comparison to their conventionally sintered counterparts

  • Biju ThangjamEmail author
  • Ibetombi Soibam
Research
  • 3 Downloads

Abstract

Microwave technique was employed for sintering a series of Ni0.5−xMgxCu0.3Zn0.2Fe2O4 nanoferrites (x = 0.05, 0.10, 0.15, 0.20) synthesized by citrate precursor method. The samples were characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), LCR meter, and Fourier-transform infrared spectroscopy (FTIR). A comparative analysis was performed for the microwave-sintered specimens and conventionally sintered specimens. This work highlights the significant reduction in sintering duration for microwave technique and remarkable improvement in electromagnetic properties like higher dc resistivity and higher initial permeability for microwave-sintered samples as compared to conventionally sintered ones, thereby making microwave-sintered samples more suitable for high frequency and multilayer chip inductor (MLCI) applications.

Keywords

Microwave sintering NiMgCuZn nanoferrites Dielectric properties AC conductivity initial permeability 

Notes

Acknowledgements

The authors are thankful to Manipur University for the XRD measurements, NEHU for the SEM measurements, and IIT Madras for the FTIR measurements.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Das, S., Mukhopadhyay, A.K., Datta, S., Basu, D.: Prospects of microwave processing: an overview. Bull. Mater. Sci. 32, 1–13 (2009)CrossRefGoogle Scholar
  2. 2.
    Hsu, W.C., Chen, S.C., Kuo, P.C., Lie, C.T., Tsai, W.S.: Preparation of NiCuZn ferrite nanoparticles from chemical co-precipitation method and the magnetic properties after sintering. Mater. Sci. Eng. B. 111, 142–149 (2004)CrossRefGoogle Scholar
  3. 3.
    Thangjam, B., Soibam, I.: Structural, electrical and magnetic properties of Mg doped Ni-Cu-Zn nanoferrites synthesized by citrate precursor method. Int. J. Appl. Eng. Res. 12, 13201–13206 (2017)Google Scholar
  4. 4.
    Ertugrul, O., Park, H.-S., Onel, K., Willert-Porada, M.: Effect of particle size and heating rate in microwave sintering of 316L stainless steel. Powder Technol. 253, 703–709 (2014)CrossRefGoogle Scholar
  5. 5.
    Hench, L.L., West, J.K.: Principles of electronic ceramics. John Wiley & Sons, New York (1990)Google Scholar
  6. 6.
    Tsuji, K., Han, H., Guillemet-Fritsch, S., Randall, C.A.: Dielectric relaxation and localized electron hopping in colossal dielectric (Nb, in)- doped TiO2 rutile nanoceramics. Phys. Chem. Chem. Phys. 19, 8568–8574 (2017)CrossRefGoogle Scholar
  7. 7.
    Tang, R., Jiang, C., Qian, W., Jian, J., Zhang, X., Wang, H., Yang, H.: Dielectric relaxation, resonance and scaling behaviours in Sr3Co2Fe24O41 hexaferrite. Sci. Rep. 5, 13645 (2015).  https://doi.org/10.1038/srep13645 CrossRefGoogle Scholar
  8. 8.
    Aravind, G., Raghasudha, M., Ravinder, D.: Electrical transport properties of nano crystalline Li-Ni ferrites. J. Mater. 1, 348–356 (2015)Google Scholar
  9. 9.
    Soohoo, R.F.: Theory and application of ferrites. Prentice Hall, Inc., Upper Saddle River (1960)Google Scholar
  10. 10.
    Rahman, M.A., Rahman, M.A., Hossain, A.K.M.A.: Effect of Cu2+ substitution on structural, magnetic and transport properties of Fe2.5Zn0.5-xCuxO4. J. Magn. Magn. Mater. 369, 168–175 (2014)CrossRefGoogle Scholar
  11. 11.
    Roy, P.K., Bera, J.: Characterization of nanocrystalline NiCuZn ferrite powders synthesized by sol-gel auto combustion method. J. Mater. Process. Technol. 197, 279–283 (2008)CrossRefGoogle Scholar
  12. 12.
    Choudhury, S., Bhuiyan, M.A., Hoque, S.M.: Effect of sintering temperature on apparent density and transport properties of NiFe2O4: synthesized from nanosize powder of NiO and Fe2O3. International Nano Letters. 2, 6 (2012)CrossRefGoogle Scholar
  13. 13.
    Rafiq, U., Hanif, M., Anis-ur-Rehman, M., ul Haq, A.: AC electrical properties of MgFe2-xNdxO4 (x = 0 to 0.04) for high frequency applications. J. Supercond. Nov. Magn. (2016).  https://doi.org/10.1007/s10948-016-3742-5
  14. 14.
    Thangjam, B., Soibam, I.: FT-IR study of Cu substituted Ni-Zn ferrites prepared by citrate precursor method. Advanced Materials Proceedings. 2(3), 205–208 (2017)CrossRefGoogle Scholar
  15. 15.
    Lee, J.D.: Concise inorganic chemistry. Wiley, U.K. (1996)Google Scholar
  16. 16.
    Atkins, P.W., Overton, T.L., Rourke, J.P., Weller, M.T., Armstrong, F.A., Hagerman, M.: Inorganic chemistry. W.H. Freeman and Company, New York (2009)Google Scholar
  17. 17.
    Bednorz, J.G., Müller, K.A.: Possible high Tc superconductivity in the Ba-La-Cu-O system. Z. Phys. B- Condensed Matter. 64, 189–193 (1986)CrossRefGoogle Scholar
  18. 18.
    Cullity, B.D., Graham, C.D.: Introduction to magnetic materials. John Wiley & Sons, Hoboken (2009)Google Scholar
  19. 19.
    Smit, J., Wijn, H.P.J.: Ferrites. Cleaver-Hume Press Ltd, London (1959)Google Scholar
  20. 20.
    Smit, J., Winkler, G., Verweel, J., Dill, J.F., Weiss, R.S., Mallinson, J.C., Middell, S.: Magnetic properties of materials. Mc Graw-Hill, New York (1971)Google Scholar

Copyright information

© Australian Ceramic Society 2019

Authors and Affiliations

  1. 1.Department of PhysicsNational Institute of Technology ManipurImphalIndia
  2. 2.Department of PhysicsDhanamanjuri College of ScienceImphalIndia

Personalised recommendations