Advertisement

Crystallization and spectroscopic characterizations of binary SrO-B2O3 glasses doped with LiF, NaF, CaF2, or TiO2

  • F. H. ElBatalEmail author
  • M. A. Marzouk
  • H. A. ElBatal
Research
  • 10 Downloads

Abstract

Glasses based on the basic chemical composition of binary strontium borate (SrO 50-B2O350 mol%) together with samples containing dopant (2%) with one of the fluorides (LiF, NaF, CaF2) or TiO2 have been synthesized through the routinely melting and annealing technique. Collective structural, optical, and thermal properties have been measured for the prepared glasses. X-ray diffraction and SEM measurements were carried out for their corresponding glass-ceramics which were synthesized by controlled thermal heat treatment with two-step regime. FT infrared absorption spectra reveal composite vibrational modes in the mid-range 400–1600 cm−1 which are related to the co-presence of both triangular and tetrahedral borate building units in their particular different wavenumber sites. The low dopant level did not make any distinct variations in the IR spectra. X-ray diffraction patterns elucidate the formed crystal phases after crystallization mainly strontium metaborate and other related borate phase and the LiF shows no distinct variation while NaF2 and CaF2 induce the formation of additional crystalline Na-containing or Ca-containing phases besides the formation of NaF or fluorite (CaF2). TiO2 acts as a nucleating agent and also separate as rutile. The crystallization behavior has been correlated with the assumption of the tendency of SrO to induce phase separation in the host binary borate glass and controlled heat treatment initiates the separation of strontium metaborate crystalline phase in the base binary SrO-B2O3 in accordance with its composition and the role of dopants is found to be varying with the type of dopant. The measured thermal expansion parameters of the prepared glasses reveal variations in their values for transformation and softening temperatures depending on the type of added dopant. The changes in the thermal expansion coefficients in the different parts of the thermal curves are related to the ability of the network to absorb lattice expansion through bending of the bonds. The uniform observed ultraviolet absorption bands are related to traces of iron (Fe3+) ions present as impurities.

Keywords

SrO.B2O3 glass LiF NaF CaF2 TiO2 FTIR optical spectra Thermal expansion Glass-ceramics 

Notes

References

  1. 1.
    Krogh-Moe, J., Non-Cryst, J.: Solids. 1, 269–284 (1969)Google Scholar
  2. 2.
    Kamitsos, E.I.: Phys Chem Glasses. 44, 79–87 (2003)Google Scholar
  3. 3.
    Shelby, J.E., Amer, J.: Ceram Soc. 66(6), 225–227 (1983)CrossRefGoogle Scholar
  4. 4.
    Shelby, J.E.: Introduction to Glass Science and Technology, 2nd edn. The Royal Society of Chemistry, Cambridge, UK (2005)Google Scholar
  5. 5.
    A. C. Wright, S. A. Feller, A. C. Hannon (Eds.) Proc. 2nd Conf. Borate Glasses, Crystals and Melts, Society of Glass Technology, Sheffield, UK, (1997)Google Scholar
  6. 6.
    P. J. Bray, p.1 in reference (5)Google Scholar
  7. 7.
    Rajyastee, C., Rao, D.K., Mol, J.: Struct. 1007, 168–174 (2012)Google Scholar
  8. 8.
    Tauch, D., Rüssel, C., Non-Cryst, J.: Solids. 351, 2294–2298 (2005)Google Scholar
  9. 9.
    Lower, N.P., McRae, J.L., Feller, H.A., Batzen, A.R., Kapoor, S., ffatigato, M.A., Feller, S.A.: J Non-Cryst Solids. 293-295, 669–675 (2001)CrossRefGoogle Scholar
  10. 10.
    McMillan, P.W., Glass-Ceramics 2nd Edition, Academic Press, London (1979).Google Scholar
  11. 11.
    Strnad, Z., Glass-Ceramic Materials, Elsevier, Amsterdam (1986).Google Scholar
  12. 12.
    Holland, W., Beall, G.H., Glass-Ceramic Technology, 2nd Edition, American Ceramic Society, Westerville OH, USA (2002).Google Scholar
  13. 13.
    Vogel, W., Schmidt, W., Horn, L.: Z Chem. 276(401), 9 (1969)Google Scholar
  14. 14.
    Ehrt, D., Reiss, H., Vogel, W.: Silikatltechnik. 27, 304 (1976)Google Scholar
  15. 15.
    Ehrt, D., Reiss, H., Vogel, W.: Silikattechnik. 359, 28 (1977)Google Scholar
  16. 16.
    Woltz, S., Rüssel, C.: J Non-Cryst Solids. 337, 226 (2004)Google Scholar
  17. 17.
    Keding, R., Tauch, D., Rüssel, C.: J Non-Cryst Solids. 348, 123 (2004)Google Scholar
  18. 18.
    Tauc, D., Rüssel, C.: J Non-Cryst Solids. 351, 2294 (2005)Google Scholar
  19. 19.
    Rüssel, C., Tauc, D., Garkova, R., Woltz, S., Volksh, G.: Phys Chem Glasses: Eur J Glass Sci Technol B. 47(4), 397 (2006)Google Scholar
  20. 20.
    Fu, Q., Saiz, E., Rahman, M.N., Tomsia, A.P.: Mater Sci Eng C. 31, 1245–1256 (2011)Google Scholar
  21. 21.
    Ouis, M.A., Abdelghany, A.M., ElBatal, H.A.: Process Appl Ceram. 26, 141 (2012)Google Scholar
  22. 22.
    Abdelghany, A.M. , ElBatal, H.A., EzzElDin, F.M.,: Ceram Intern. 38, 1105-1113 (2012)Google Scholar
  23. 23.
    Marzouk, M.A., ElBatal, F.H., Eisa, W.H., Ghoneim, N.A., Non-Cryst, J.: Solids. 387, 155–166 (2014)Google Scholar
  24. 24.
    Ouis, M.A., ElBatal, H.A.: Silicon. 9, 703–710 (2017)Google Scholar
  25. 25.
    O’Donnell, M.D., Hill, R.G.: Acta Biomaterialia. 2382-2385, 6 (2010)Google Scholar
  26. 26.
    Abdelghany, A.M., Ouis, M.A., Azooz, M.A., ElBatal, H.A., El-Bassyouni, G.T.: Spectrochim Acta(A).  https://doi.org/10.1016/j.saa.2015.07.072
  27. 27.
    Ehrt, D.: Phys Chem Glasses: Euro J Glass Sci.& Technol(B). 56(6), 217–234 (2015)Google Scholar
  28. 28.
    Kamitsos, E.I., Patsis, A.P., Karakassides, M.A., Chryssikos, G.D.: J Non-Cryst Solids. 126, 52–67 (1990)Google Scholar
  29. 29.
    Dunken, H., Doremus, R.H.: J Non-Cryst Solids. 92, 61–72 (1987)Google Scholar
  30. 30.
    Husung, R.D., Doremus, R.H., Mater, J.: Res. 5, 2209–2217 (1990)Google Scholar
  31. 31.
    Hammad, AH., Abdelghany, A.M., ElBatal, H.A.: J Non-CrystSolids. 450, 66–74 (2016)Google Scholar
  32. 32.
    Hudon, D.R., Baker, J.: Non-Cryst Solids. 303, 299–345, 346-353 (2002)Google Scholar
  33. 33.
    Hess, P.C.: Geochim Cosmochim Acta. 60, 2365 (1996)Google Scholar
  34. 34.
    Holloway, D.G.: The physical properties of glass, pp. 36–41. Wykeham Publications Ltd., London (1973)Google Scholar
  35. 35.
    Wong, J., Angell, C.A.: Glass structure by spectroscopy. Marcel Dekker, New York (1976)Google Scholar
  36. 36.
    Klyuev, V.P., Pevzner, B.Z., Glass Phys Chem. 24, 372 (1998).Google Scholar
  37. 37.
    Sigel, G.H., Ginther, R.J.: Glass Technol. 9, 66–69 (1968)Google Scholar
  38. 38.
    Cook, L., Mader, K.H.: J Am Ceram Soc. 65, 597–601 (1982)Google Scholar
  39. 39.
    Duffy, J.A.: Phys Chem Glasses. 38, 289 (1997)Google Scholar
  40. 40.
    Möncke, D., Ehrt, D.: Opti Mater. 25, 425–437 (2004)Google Scholar
  41. 41.
    Möncke, D., Ehrt, D., Photoionization of polyvalent ions. In: Glick, H.P., (eds) Materials research horizons, pp. 1–56. Nova Science Publishers Inc. (2007)Google Scholar
  42. 42.
    Möncke, D.: Photo-ionization of 3d – ions in fluoride – phosphate glasses. Inter J Appl Glass Science. 6(3), 249–267 (2015)Google Scholar

Copyright information

© Australian Ceramic Society 2019

Authors and Affiliations

  • F. H. ElBatal
    • 1
    Email author
  • M. A. Marzouk
    • 1
  • H. A. ElBatal
    • 1
  1. 1.Glass Research Department, National Research CentreGizaEgypt

Personalised recommendations