Atmospheric plasma spraying of nanocrystalline SiC particle reinforced MoSi2 prepared by mechanically activated annealing process

  • Mostafa Salek
  • Saeed Reza BakhshiEmail author
  • Mohammad Erfanmanesh


The mechanically activated annealing process was adopted to synthesize nanostructure MoSi2–SiC powders containing different SiC contents using Mo, Si, and SiC powders. Atmospheric plasma spraying technique was used to deposit the agglomerated powders of MoSi2–SiC nanocomposite under inert conditions on a nickel substrate. Phase identification and microstructural characteristics of the nanopowders and coatings were evaluated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and qualitative energy-dispersive spectroscopy (EDS). The microstructure of the plasma-sprayed coating consists of α and β-MoSi2, SiC, Mo5Si3, and a trace of SiO2 phases. It can be concluded that mechanically activated annealing synthesis with agglomeration is an effective method for the preparation of high-melting-point refractory compounds for using in plasma spraying process. The measured adhesion strength, microhardness, and roughness results of MoSi2–SiC coatings are also reported in the present work.


MoSi2–SiC Nanostructure Atmospheric plasma spraying Mechanically activated annealing 



  1. 1.
    Xu, Y., Guan, Y., Zheng, Z., Tong, X.: Microstructure and tribological properties of plasma-sprayed nanostructured sulfide coating. J. Mater. Sci. Technol. 22(5), 589–593 (2006)Google Scholar
  2. 2.
    Chen, H., Zhou, X., Ding, C.: Investigation of the thermomechanical properties of a plasma-sprayed nanostructured zirconia coating. J. Eur. Ceram. Soc. 23(9), 1449–1455 (2003)Google Scholar
  3. 3.
    Wielage, B., Steinhauser, S., Reisel, G., Morgenthal, I., Scholl, R.: Vacuum plasma spraying of prereacted MoSi2 and SiC-reinforced MoSi2 produced by a new kind of powder processing, 1st International Thermal Spray Conference: Thermal Spray Surface Engineering via Applied Research, ASM International, pp. 865–869 (2000)Google Scholar
  4. 4.
    Tiwari, R., Herman, H., Sampath, S.: Vacuum plasma spraying of MoSi2 and its composites. Mater. Sci. Eng. A. 155(1–2), 95–100 (1992)Google Scholar
  5. 5.
    Yao, Z., Stiglich, J., Sudarshan, T.: Molybdenum silicide based materials and their properties. J. Mater. Eng. Perform. 8(3), 291–304 (1999)Google Scholar
  6. 6.
    Petrovic, J.: Toughening strategies for MoSi2-based high temperature structural silicides. Intermetallics. 8(9), 1175–1182 (2000)Google Scholar
  7. 7.
    Hvizdos, P., Besterci, M., Ballokova, B., Scholl, R., Böhm, A.: Creep behaviour of MoSi2–SiC and MoSi2–HfO2. Mater. Lett. 51(6), 485–489 (2001)Google Scholar
  8. 8.
    Radhakrishnan, R., Bhaduri, S., Henager, C.: The reactive processing of silicides. JOM J. Miner. Met. Mater. Soc. 49(1), 41–45 (1997)Google Scholar
  9. 9.
    Kang, P., Yin, Z.: Phase formation during annealing as-milled powders of molybdenum disilicide. Mater. Lett. 57(28), 4412–4417 (2003)Google Scholar
  10. 10.
    Krishnarao, R., Ramarao, V., Mahajan, Y.: In situ formation of MoSi2–SiC through reaction of SiO2 or Si3N4 with Mo and carbon. J. Mater. Res. 12(12), 3322–3327 (1997)Google Scholar
  11. 11.
    Sun, L., Pan, J.: Fabrication and characterization of TiCw/MoSi2 and SiCw/MoSi2 composites. Mater. Lett. 52(3), 223–228 (2002)Google Scholar
  12. 12.
    Morris, D.G., Leboeuf, M., Morris, M.: Hardness and toughness of MoSi2 and MoSi2–SiC composite prepared by reactive sintering of powders. Mater. Sci. Eng. A. 251(1), 262–268 (1998)Google Scholar
  13. 13.
    Gedevanishvili, S., Munir, Z.: An investigation of the combustion synthesis of MoSi2β-SiC composites through electric-field activation. Mater. Sci. Eng. A. 242(1), 1–6 (1998)Google Scholar
  14. 14.
    Feng, P., Farid, A., Wang, X., Humail, I.S., Qu, X.: Mechanically activated reactive synthesis of refractory molybdenum and tungsten silicides. Int. J. Refract. Met. Hard Mater. 26(3), 173–178 (2008)Google Scholar
  15. 15.
    Suryanarayana, C.: Mechanical alloying and milling. Prog. Mater. Sci. 46(1), 1–184 (2001)Google Scholar
  16. 16.
    Gaffet, E., Abdellaoui, M., Malhouroux-Gaffet, N.: Formation of nanostructural materials induced by mechanical processings (overview). Mater. Trans. JIM. 36(2), 198–209 (1995)Google Scholar
  17. 17.
    Bakhshi, S.R.: Surface characteristics development of mechanically alloyed Mo-Si-B intermetallic compounds thermai spray coatings materials science and engineering, Isfahan University of Technology Isfahan (2009)Google Scholar
  18. 18.
    Erfanmanesh, M., Bakhshi, S.R.: Synthesis and characterization of nanocrystalline MoSi2 by mechanical alloying and heat treating. J. Clust. Sci. 24(1), 133–143 (2013)Google Scholar
  19. 19.
    ASTM B212–99, Standard test method for apparent density of free-flowing metal powders using the Hall Flowmeter funnel, ASTM International, West Conshohocken, PA (1999)
  20. 20.
    ASTM B213–03, Standard test method for flow rate of metal powders, ASTM International, West Conshohocken, PA (2003)
  21. 21.
    Erfanmanesh, M., Bakhshi, S.R., Khajelakzay, M., Salekbafghi, M.: The effect of argon shielding gas at plasma spray process on the structure and properties of MoSi2 coating. Ceram. Int. 40(3), 4529–4533 (2014)Google Scholar
  22. 22.
    Williamson, G.K., Hall, W.H.: X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1(1), 22–31 (1953)Google Scholar
  23. 23.
    Zakeri, M., Yazdani-Rad, R., Enayati, M.H., Rahimipoor, M.R.: Synthesis of MoSi2–Al2O3 nanocomposite by mechanical alloying. Mater. Sci. Eng. A. 430(1–2), 185–188 (2006)Google Scholar
  24. 24.
    ASTM C633–13, Standard test method for adhesion or cohesion strength of thermal spray coatings, ASTM International, West Conshohocken, PA (2013)
  25. 25.
    Dorset, D.L.: X-ray diffraction: a practical approach. Microsc. Microanal. 4(5), 513–515 (2005)Google Scholar
  26. 26.
    Safari, J., Akbari, G., Shahbazkhan, A., Chermahini, M.D.: Microstructural and mechanical properties of Al–Mg/Al2O3 nanocomposite prepared by mechanical alloying. J. Alloys Compd. 509(39), 9419–9424 (2011)Google Scholar
  27. 27.
    Mitra, R., Srivastava, A., Prasad, N.E., Kumari, S.: Microstructure and mechanical behaviour of reaction hot pressed multiphase Mo–Si–B and Mo–Si–B–Al intermetallic alloys. Intermetallics. 14(12), 1461–1471 (2006)Google Scholar
  28. 28.
    Zhang, L., Sun, Z., Zhang, Y., Yang, W.: Thermodynamic and kinetic analysis of in situ synthesis of MoSi2-SiC composite. Acta Metall. Sin. 34, 1205–1209 (1998)Google Scholar
  29. 29.
    Calka, A., Williams, J., Millet, P.: Synthesis of silicon nitride by mechanical alloying. Scr. Metall. Mater. 27(12), 1853–1857 (1992)Google Scholar
  30. 30.
    Mitra, R.: Mechanical behaviour and oxidation resistance of structural silicides. Int. Mater. Rev. 51(1), 13–64 (2006)Google Scholar
  31. 31.
    Pawlowski, L.: The science and engineering of thermal spray coatings, John Wiley & Sons (2008)Google Scholar
  32. 32.
    Taheri, M., Heydarzade, M., Ghadami, F.: Thermal spraying, Characteristics and applications, Rahpooyan Kherad, Tehran Iran (2009)Google Scholar
  33. 33.
    Heimann, R.B.: Plasma spray coating. Weinheim, New York (1996)Google Scholar

Copyright information

© Australian Ceramic Society 2019

Authors and Affiliations

  • Mostafa Salek
    • 1
  • Saeed Reza Bakhshi
    • 1
    Email author
  • Mohammad Erfanmanesh
    • 1
  1. 1.Department of Materials EngineeringMalek Ashtar University of TechnologyShahin ShahrIran

Personalised recommendations