Advertisement

Effect of sintering on physical, mechanical, and electrical properties of alumina-based porcelain insulator using economic raw materials doped with zirconia

  • Niraj Singh MehtaEmail author
  • Anurag Sahu
  • Neeraj Pandey
  • Ram Pyare
  • Manas R. Majhi
Research
  • 17 Downloads

Abstract

Increasing approachability of substitute materials for electrical ceramic porcelain insulator, research is requisite to adapt designs including porcelain raw materials to the current economic realities of the industry. This study aimed to analyze the effect of zirconia concentration (0, 2.5, 5, 7.5, and 10 wt.%) on the physical, mechanical, and dielectric properties of an alumina-based ceramic insulator. The pellets were prepared using the uniaxial pressure technique applying 160 MPa pressure. Different characterizations techniques such as XRD, dilatometer, and SEM used to identify the phase, thermal, and microstructural changes, respectively, of the sintered samples (1350 °C). Results indicated that alumina-based porcelain composition with 7.5 wt.% zirconia shows the maximum density of 2.63 g/cm3 with minimum water absorption of 0.18%. The average measured value of the coefficient of thermal expansion (αavg) for each sintered samples from 250 to 450 °C, and 1050 to 1250 °C is 8.254 × 10−6/ °C, and 7.16 × 10−6/ °C were observed, respectively. The highest bending (141 ± 5 MPa), compressive (216 ± 10), and tensile (40 ± 3 MPa) strength were also noted for the same composition. The value of dielectric, resistivity, and conductivity were also measured. From the result, it was concluded that low-cost raw materials with 7.5 wt.% zirconia-doped concentration yield the better physical, mechanical, and electrical properties with alumina-based electrical porcelain insulator.

Keywords

Zirconia Mechanical Density Electrical properties Dielectric 

Notes

Acknowledgments

The authors gratefully acknowledge the support provided by technicians at Central instrument Facility Center (CIFC) and the Department of Ceramics Engineering especially refractory research laboratory IIT (BHU) Varanasi for the support provided for this research.

References

  1. 1.
    Huang, C.L., Wang, J.J., Huang, C.Y.: Sintering behavior and microwave dielectric properties of nano alpha-alumina. Mater. Lett. 59, 3746–3749 (2005).  https://doi.org/10.1016/j.matlet.2005.06.053 CrossRefGoogle Scholar
  2. 2.
    Štubňa, I., Trník, A., Vozár, L.: Thermo mechanical and thermos dilatometric analysis of green alumina porcelain. Ceram. Int. 35, 1181–1185 (2009).  https://doi.org/10.1016/j.ceramint.2008.05.004 CrossRefGoogle Scholar
  3. 3.
    Iqbal, Y., Lee, W.E.: Microstructural evolution in triaxial porcelain.pdf. J. Am. Ceram. Soc. 83, 3121–3127 (2000)CrossRefGoogle Scholar
  4. 4.
    Correia, S.L., Oliveira, A.P.N., Hotza, D., Segadães, A.M.: Properties of triaxial porcelain bodies: interpretation of statistical modelling. J. Am. Ceram. Soc. 89, 3356–3365 (2006)CrossRefGoogle Scholar
  5. 5.
    Amigó, J.M., Serrano, F.J., Kojdecki, M.A., Bastida, J., Esteve, V., Reventós, M.M., Martí, F.: X-ray diffraction s microstructure analysis of mullite, quartz, and corundum in porcelain insulators. J. Eur. Ceram. Soc. 25, 1479–1486 (2005).  https://doi.org/10.1016/j.jeurceramsoc.2004.05.019 CrossRefGoogle Scholar
  6. 6.
    Mehta, N.S., Sahu, P.K., Tripathi, P., Pyare, R., Majhi, M.R.: Influence of alumina and silica addition on the physico-mechanical and dielectric behavior of ceramic porcelain insulator at high sintering temperature. Boletín de la Sociedad Española de Cerámica y Vidrio 57, 151–159 (2017).  https://doi.org/10.1016/j.bsecv.2017.11.002
  7. 7.
    Olupot, P.W., Jonsson, S., Byaruhanga, J.K.: Development and characterisation of triaxial electrical porcelains from Ugandan ceramic minerals. Ceram. Int. 36, 1455–1461 (2010).  https://doi.org/10.1016/j.ceramint.2010.02.006 CrossRefGoogle Scholar
  8. 8.
    Touzin, M., Goeuriot, D., Guerret-Piecour, C., Juve, D., Fitting, H.J.: Alumina based ceramics for high-voltage insulation. J. Eur. Ceram. Soc. 30, 805–817 (2010).  https://doi.org/10.1016/j.jeurceramsoc.2009.09.025 CrossRefGoogle Scholar
  9. 9.
    Gralik, G., Chinelatto, A.L., Chinelatto, A.S.A.: Effect of different sources of alumina on the microstructure and mechanical properties of the triaxial porcelain. Cerâmica. 60, 471–481 (2014).  https://doi.org/10.1590/S0366-69132014000400004 CrossRefGoogle Scholar
  10. 10.
    Meng, Y., Gong, G., Wei, D., Xie, Y.: In situ high-temperature X-ray diffraction study on high strength aluminous porcelain insulator with the Al2O3-SiO2-K2O-Na2O system. Appl. Clay Sci. 760–767 (2016).  https://doi.org/10.1016/j.clay.2016.07.014
  11. 11.
    Guo, X., Yuan, R.: On the grain boundaries of the ZrO2-based solid electrolyte. Solid State Ionics. 80, 159–166 (1995)CrossRefGoogle Scholar
  12. 12.
    Wahsh, M.M.S., Khattab, R.M., Awaad, M.: Thermo-mechanical properties of mullite/zirconia reinforced alumina ceramic composites. Mater. Des. 41, 31–36 (2012).  https://doi.org/10.1016/j.matdes.2012.04.040 CrossRefGoogle Scholar
  13. 13.
    Tartaj, P., Serna, C.J., Moya, J.S., Requena, J., Ocana, M., De Aza, S., Guitian, F.: The formation of zircon from amorphous ZrO2.SiO2 powders. J. Mater. Sci. 31, 6089–6094 (1996)CrossRefGoogle Scholar
  14. 14.
    M’Peko, J.C., Spavieri, D.L., Da Silva, C.L., Fortulan, C.A., De Souza, D.P.F., De Souza, M.F.: Electrical properties of zirconia-alumina composites. Solid State Ionics. 156, 59–69 (2003).  https://doi.org/10.1016/S0167-2738(02)00611-2 CrossRefGoogle Scholar
  15. 15.
    Palmero, P., Pulci, G., Marra, F., Valente, T., Montanaro, L.: Al2O3/ZrO2/Y3Al5O12 composites: a high-temperature mechanical characterization. Materials (Basel). 8, 611–624 (2015)CrossRefGoogle Scholar
  16. 16.
    ASTM C20: Standard test methods for apparent porosity, water absorption, apparent specific gravity and bulk modulus of burned refractory brick and shapes, ASTM International (2010).  https://doi.org/10.1520/C0020-00R10
  17. 17.
    ASTM C356-10: Standard test method for linear shrinkage of preformed high- temperature thermal insulation subjected to soaking heat ASTMInternational, (1997). 100 Barr Harbor Drive, West Conshohocken, PA 19428–2959, United StatesGoogle Scholar
  18. 18.
    Wan, W., Feng, Y., Yang, J., Bu, W., Qiu, T.: Microstructure, mechanical and high-temperature dielectric properties of zirconia-reinforced fused silica ceramics. Ceram. Int. 42, 6436–6443 (2015).  https://doi.org/10.1016/j.ceramint.2016.01.063 CrossRefGoogle Scholar
  19. 19.
    KANNO, Y.: Thermodynamic and crystallographic discussion of the formation and dissociation of zircon. J. Mater. Sci. 24, 2415–2420 (1989)CrossRefGoogle Scholar
  20. 20.
    Nath, S., Manna, I., Majumdar, J.D.: Nanomechanical behavior of yttria-stabilized zirconia (YSZ) based thermal barrier coating. Ceram. Int. 41, 5247–5256 (2015)CrossRefGoogle Scholar
  21. 21.
    Mazen, S.A.: Infrared absorption and dielectric properties of Li–Cu ferrite. Mater. Chem. Phys. 62, 139–147 (2000)CrossRefGoogle Scholar
  22. 22.
    Jordan, M.M., Montero, M.A., Meseguer, S., Sanfeliu, T.: Influence of firing temperature and mineralogical composition on bending strength and porosity of ceramic tile bodies. Appl. Clay Sci. 42, 266–271 (2008)CrossRefGoogle Scholar
  23. 23.
    Al-Hilli, M.F., Al-Rasoul, K.T.: Characterization of alumino-silicate glass/kaolinite composite. Ceram. Int. 39, 5855–5862 (2013)CrossRefGoogle Scholar

Copyright information

© Australian Ceramic Society 2019

Authors and Affiliations

  1. 1.Department of Ceramic EngineeringIndian Institute of Technology (BHU)VaranasiIndia
  2. 2.Department of Ceramic EngineeringNational Institute of RourkelaOdishaIndia

Personalised recommendations