Advertisement

Preparation and characterization of cordierite ceramic from coal series kaolin for electronic application

  • Jianfeng Wu
  • Chenglong LuEmail author
  • Xiaohong Xu
  • Dongbin Wang
  • Yaxiang Zhang
  • Yang Zhou
Research
  • 9 Downloads

Abstract

Coal series kaolin (CSK) is used as the raw material to prepare CSK cordierite electronic ceramics. Sintering process is analyzed by a heating microscope. The microstructure of green body, phase transformation, and microstructure evolution during sintering process is elucidated by scanning electron microscope (SEM) and X-ray diffraction (XRD). Comprehensive evaluations of our product are made for physical properties, electrical properties, and coefficient of thermal expansion (CTE), respectively. According to test results of the obtained CSK cordierite ceramic, the sintering temperature range is 1280~1420 °C, synthetic temperature is 1160~1280 °C, densification process is 1360~1420 °C, and large deformations of cordierite ceramic happen above 1420 °C. The optimum performance of the obtained CSK cordierite ceramics is summarized as follows: volume density is 1.81 g·cm3, apparent porosity is 28%, bending strength is 65 MPa, CTE is 1.41 × 10−6 °C−1 (600 °C), and dielectric constant is 4.6 (100 Hz). As a result, this cordierite electronic ceramics from CSK have great potential to do with applications in electric heater supports, such as electric stove, ceramic heater base, and electric heater cooling plate.

Keywords

Cordierite ceramic Coal series kaolin Sintering process Electrical properties Electrical applications 

Notes

Funding information

The authors appreciate the financial support from the National Basic Research Program of China (973) Program, No. 2010CB227105.

References

  1. 1.
    Ohsato, H., Kim, J.S., Cheon, C.I., Kagomiya, I.: Crystallization of indialite/cordierite glass ceramics for millimeter-wave dielectrics. Ceram Int. 41, S588–S593 (2015)CrossRefGoogle Scholar
  2. 2.
    Zhang, L., Olhero, S., Ferreira, J.M.F.: Thermo-mechanical and high-temperature dielectric properties of cordierite-mullite-alumina ceramics. Ceram Int. 42, 16897–16905 (2016)CrossRefGoogle Scholar
  3. 3.
    Bing, Z., Cao, C., Zhu, H., Li, G.: Preparation low dielectric constant material of cordierite with polyacrylamide gel method. J Mater Sci. 40, 1781–1783 (2005)CrossRefGoogle Scholar
  4. 4.
    Pal, D., Chakraborty, A.K., Sen, S., Sen, S.K.: The synthesis, characterization and sintering of sol-gel derived cordierite ceramics for electronic applications. J Mater Sci. 31, 3995–4005 (1996)CrossRefGoogle Scholar
  5. 5.
    Knickerbocker, S.H., Kumar, A.H., Herron, L.W.: Cordierite glass-ceramics for multilayer ceramic packaging. Am Ceram Soc Bull. 72, 90–95 (1993)Google Scholar
  6. 6.
    Camerucci, M.A., Urretavizcaya, G., Castro, M.S.: Electrical properties and thermal expansion of cordierite and cordierite-mullite materials. J Eur Ceram Soc. 21, 2917–2923 (2001)CrossRefGoogle Scholar
  7. 7.
    Labrincha, J.A., Albuquerque, C.M., Ferreira, J.M., Ribeiro, M.J.: Electrical characterisation of cordierite bodies containing Al-rich anodising sludge. J Eur Ceram Soc. 26, 825–830 (2006)CrossRefGoogle Scholar
  8. 8.
    Miyake, A.: Effect of the ionic size on thermal expansion of low cordierite by molecular dynamics simulation. J Am Ceram Soc. 88, 121–126 (2005)CrossRefGoogle Scholar
  9. 9.
    Naskar, M.K., Chatterjee, M.: A novel process for the synthesis of cordierite (Mg2Al2Si5O18) powders from rice husk ash and other sources of silica and their comparative study. J Eur Ceram Soc. 24, 3499–3508 (2004)CrossRefGoogle Scholar
  10. 10.
    Banjuraizah, J., Mohamad, H., Ahmad, Z.A.: Crystal structure of single phase and low sintering temperature of α-cordierite synthesized from talc and kaolin. J Alloys Compd. 482, 429–436 (2009)CrossRefGoogle Scholar
  11. 11.
    Ljiljana, T., Zagorka, A.P., Stjepan, P., Andrić, L.D.: Synthesis and characterization of cordierite from kaolin and talc for casting application. FME Trans. 31, 19–59 (2003)Google Scholar
  12. 12.
    Oliveira, F.A.C., Shohoji, N., Fernandes, J.C., Rosa, L.G.: Solar sintering of cordierite-based ceramics at low temperatures. Sol Energy. 78, 351–361 (2005)CrossRefGoogle Scholar
  13. 13.
    Chandrasekhar, S., Ramaswamy, S.: Influence of mineral impurities on the properties of kaolin and its thermally treated products. Appl Clay Sci. 21, 133–142 (2002)CrossRefGoogle Scholar
  14. 14.
    Ding, S.L., Liu, Q.F., Wang, M.Z.: Study of kaolinite rock in coal bearing stratum, North China. Procedia Earth Planet Sci. 1, 1024–1028 (2009)CrossRefGoogle Scholar
  15. 15.
    Cheng, H., Liu, Q., Cui, X., Zhang, Z.: Mechanism of dehydroxylation temperature decrease and high temperature phase transition of coal-bearing strata kaolinite intercalated by potassium acetate. J Colloid Interface Sci. 376, 47–56 (2012)CrossRefGoogle Scholar
  16. 16.
    Cheng, H., Yang, J., Liu, Q., Zhang, J., Frost, R.L.: A spectroscopic comparison of selected Chinese kaolinite, coal bearing kaolinite and halloysite-a mid-infrared and near-infrared study. Spectrochim Acta A. 77, 856–861 (2010)CrossRefGoogle Scholar
  17. 17.
    Loughnan, F.C., Roberts, F.I.: Dickite-and kaolinite-bearing sandstones and conglomerates in Illawarra Coal Measures of the Sydney Basin, New South Wales. Aust J Earth Sci. 33, 325–332 (1986)CrossRefGoogle Scholar
  18. 18.
    Xu, X., Lao, X., Wu, J., Zhang, Y., Xu, X.: Microstructural evolution, phase transformation, and variations in physical properties of coal series kaolin powder compact during firing. Appl Clay Sci. 115, 76–86 (2015)CrossRefGoogle Scholar
  19. 19.
    Oliveira, F.A.C., Dias, S., Vaz, M.F., Fernandes, J.C.: Behaviour of open-cell cordierite foams under compression. J Eur Ceram Soc. 26, 179–186 (2006)CrossRefGoogle Scholar
  20. 20.
    Awano, M., Takagi, H., Kuwahara, Y.: Grinding effects on the synthesis and sintering of cordierite. J Am Ceram Soc. 75, 2535–2540 (2005)CrossRefGoogle Scholar
  21. 21.
    Xu, X., Li, J., Wu, J., Tang, Z., Chen, L.: Preparation and thermal shock resistance of corundum-mullite composite ceramics from andalusite. Ceram Int. 43, 1762–1767 (2017)CrossRefGoogle Scholar
  22. 22.
    Ding, J., Deng, C.J., Yuan, W.J., Zhu, H.X., Zhang, X.J.: Novel synthesis and characterization of silicon carbide nanowires on graphite flakes. Ceram Int. 40, 4001–4007 (2014)CrossRefGoogle Scholar
  23. 23.
    Shi, Z.M., Liang, K.M., Gu, S.R.: Effects of CeO2 on phase transformation towards cordierite in MgO-Al2O3-SiO2 system. Mater Lett. 51, 68–72 (2001)CrossRefGoogle Scholar
  24. 24.
    Chakraborty, A.K.: Phase Transformation of Kaolinite Clay, pp 17–18, Springer, US, 2014Google Scholar
  25. 25.
    Naga, S.M., Sayed, M., Elmaghraby, H.F., Khalil, M.S., El-Sayed, M.A.: Fabrication and properties of cordierite/anorthite composites. Ceram Int. 43, 6024–6028 (2017)CrossRefGoogle Scholar
  26. 26.
    Kirat, G., Aksan, M.A.: Role of the Fe-substitution in dielectric behavior of the glass–ceramic cordierite Mg2Al4Si5O18 system. Physica B. 454, 131–134 (2014)CrossRefGoogle Scholar
  27. 27.
    Alford, N.M., Penn, S.J.: Sintered alumina with low dielectric loss. J Appl Phys. 80, 5895–5898 (1996)CrossRefGoogle Scholar
  28. 28.
    Zhang, Y., Wang, W., Tan, R., Yang, Y., Zhang, X.: The solubility and temperature dependence of resistivity for aluminum-doped zinc oxide ceramic. Int J Appl Ceram Technol. 9, 374–381 (2012)CrossRefGoogle Scholar
  29. 29.
    Kobayashi, Y., Katayama, M., Kato, M., Kuramochi, S.: Effect of microstructure on the thermal expansion coefficient of sintered cordierite prepared from sol mixtures. J Am Ceram Soc. 96, 1863–1868 (2013)CrossRefGoogle Scholar
  30. 30.
    Kuscer, D., Bantan, I., Hrovat, M., Malič, B.: The microstructure, coefficient of thermal expansion and flexural strength of cordierite ceramics prepared from alumina with different particle sizes. J Eur Ceram Soc. 37, 739–746 (2017)CrossRefGoogle Scholar
  31. 31.
    Chen, L., Kong, W., Yao, J., Gao, B., Zhang, Q.: Effect of sintering temperature on microstructure and electrical properties of MnCoNiO ceramic materials using nanoparticles by reverse microemulsion method. J Mater Sci Mater Electron. 27, 1–6 (2016)Google Scholar

Copyright information

© Australian Ceramic Society 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Silicate Materials for ArchitecturesWuhan University of TechnologyWuhanPeople’s Republic of China
  2. 2.Hubei Key Laboratory of Mine Environmental Pollution Control & RemediationHubei Polytechnic UniversityHuangshiPeople’s Republic of China

Personalised recommendations