Grown of highly porous ZnO-nanoparticles by pulsed laser ablation in liquid technique for sensing applications

  • Shumaila Islam
  • Hazri Bakhtiar
  • Khaldoon N. Abbas
  • Saira Riaz
  • Shahzad Naseem
  • Abdul Rahman Bin Johari


Pulsed laser ablation technique in deionized water with low laser fluency has been explored to prepare uniform dispersed porous ZnO nanoparticles for sensing applications. Surface morphology, particle size, porous structure, roughness, elemental distribution, and chemical bonding of the synthesized ZnO are analyzed by TEM, FESEM, AFM, EDX, and FTIR spectroscopy, respectively. Sensing behavior is observed by UV–Vis absorption measurements. TEM and FESEM analysis show that the prepared ZnO-coated film has homogeneous, dispersed, highly porous, and crack-free surface; the average particle size are observed ~ 24.72 ± 2.97 nm. The porous structure is responsible for appropriate sensing behavior. Low roughness value ~ 1.52 nm which is analyzed by AFM is advantageous for sensing behavior. EDX spectrum and elements mapping clearly show the uniform Zn and O distribution. XRD analysis confirms the hexagonal wurtzite structure of ZnO. FTIR reveals the Zn and O chemical bonding successfully. UV-Visible analysis exhibits that the prepared ZnO matrix has good incorporation with multi-dyes solutions at pH values 10–12 with significant changes in color behavior. The highest pKa value ~ 9.77 at a wavelength of 598.28 nm was calculated for multi-dyes immobilized ZnO matrix. So, it can be concluded that prepared ZnO nanostructures are potential candidates for sensing application.


PLAL technique ZnO nanostructures pH sensing Indicator dyes Crack-free surface 


Funding information

Shumaila Islam received financial support from the Universiti Teknologi Malaysia, through RMC under the Postdoctoral Fellowship for the performance and management of the project. Corresponding author is supported by the Malaysian Ministry of Education through the FRGS fund with vote 03E89.


  1. 1.
    Bai, J., Zhou, B.: Titanium dioxide nanomaterials for sensor applications. Chem. Rev. 114, 10131–10176 (2014)CrossRefGoogle Scholar
  2. 2.
    Islam, S., Bakhtiar, H., Bidin, N., Salim, A.A., Riaz, S., Abbas, K.N., Suan, L.P., Naseem, S.: Influence of ZnO doping on structural, optical and pH-stimulus characteristics of silica-titania nanocomposite matrix. J. Saudi Chem. Soc. (2018). CrossRefGoogle Scholar
  3. 3.
    S. Chaudhary, A. Umar, K. K. Bhasin, S. Baskoutas, Chemical sensing applications of ZnO nanomaterials, Materials, 11(287): (2018)1–38CrossRefGoogle Scholar
  4. 4.
    Pawar, R.C., Cho, D., Lee, C.S.: Fabrication of nanocomposite photocatalysts from zinc oxide nanostructures and reduced graphene oxide. Curr. Appl. Phys. 13, S50–S57 (2013)CrossRefGoogle Scholar
  5. 5.
    Vanalakar, S.A., Patil, V.L., Harale, N.S., Vhanalakar, S.A., Gang, M.G., Kim, J.Y., Patil, P.S., Kim, J.H.: Controlled growth of ZnO nanorod arrays via wet chemical route for NO2 gas sensor applications. Sensors Actuators B Chem. 221, 1195–1201 (2015)CrossRefGoogle Scholar
  6. 6.
    N. B. Pompermayer, M. B. Porto, E. F. Souza, Environmental Analysis of the Zinc Oxide Nanophotocatalyst Synthesis. World Academy of Science, Engineering and Technology. International Journal of Environmental, Chemical, Ecological, Geological and Geophysical Engineering, 7(6): (2013) 380–385Google Scholar
  7. 7.
    Sahu, D.R., Lin, S.Y., Huang, J.L.: ZnO/Ag/ZnO multilayer films for the application of a very low resistance transparent electrode. Appl. Surf. Sci. 252, 7509–7514 (2006)CrossRefGoogle Scholar
  8. 8.
    Abbas, K.N., Bidin, N., Sabry, R.S., Al-Asedy, H.J., Al-Azawi, M.A., Islam, S.: Structures and emission features of high-density ZnO micro/nanostructure grown by an easy hydrothermal method. Mater. Chem. Phys. 182, 298–307 (2016)CrossRefGoogle Scholar
  9. 9.
    Huang, M.H., Mao, S., Feick, H., Yan, H.Q., Wu, Y.Y., Kind, H., Weber, E., Russo, R., Yang, P.D.: Room-temperature ultraviolet nanowire nanolasers. Science. 292, 1897–1899 (2001)CrossRefGoogle Scholar
  10. 10.
    Kołodziejczak-Radzimska, A., Jesionowski, T.: Zinc oxide—from synthesis to application: a review. Materials. 7(4), 2833–2881 (2014)CrossRefGoogle Scholar
  11. 11.
    Yang, J.H., Zheng, J.H., Zhai, H.J., Yang, L.L., Zhang, Y.J., Lang, J.H., Gao, M.: Growth mechanism and optical properties of ZnO nanotube by the hydrothermal method on Si substrates. J. Alloys Compd. 475, 741–744 (2009)CrossRefGoogle Scholar
  12. 12.
    L. F. Koao, F. B. Dejene, H. C. Swart, Effect of pH on the properties of ZnO nanostructures prepared by chemical bath deposition method. Proceedings of SAIP2015, 43–48Google Scholar
  13. 13.
    Sun, Y., Ndifor-Angwafor, N.G., Riley, D.J., Ashfold, M.N.R.: Synthesis and photoluminescence of ultra-thin ZnO nanowire/nanotube arrays formed by hydrothermal growth. Chem. Phys. Lett. 431, 352–357 (2006)CrossRefGoogle Scholar
  14. 14.
    Gao, P.X., Lao, C.S.h., Hughes, W.L., Wang, Z.L.: Three-dimensional interconnected nanowire networks of ZnO. Chem. Phys. Lett. 408, 174–178 (2005)CrossRefGoogle Scholar
  15. 15.
    S. Islam, N. Bidin, K. N. Abbas, S. Riaz, S. Naseem, G. Krishnan, Synthesis and characterization of optically active Zn-doped silica-titania nano composites for sensing applications. The 2016 world congress on Advanced in Civil, Environmental, and Materials Research (ACEM 16) Jeju Island, Korea, August 28–September 1, 2016Google Scholar
  16. 16.
    F. Aslan, A. Tumbul, A. Goktas¸ R. Budakoglu, H. Mutlu, Growth of ZnO nanorod arrays by one-step sol–gel process. J. Sol-Gel Sci. Technol. 80 (2016) 389–395CrossRefGoogle Scholar
  17. 17.
    Riaz, S., Naseem, S., Xu, Y.: Room temperature ferromagnetism in sol–gel deposited un-doped ZnO films. J. Sol-Gel Sci. Technol. 59(3), (2011)CrossRefGoogle Scholar
  18. 18.
    Sorayaie, P., Yusefi, M.H., Fallah, H.R., Parsanasab, G.M.: Growth of a seven pointed star shaped of vertical and uniform ZnO nanostructures on optical fiber via catalyst-free VLS mechanisms. Appl. Phys. A Mater. Sci. Process. 118, 519–524 (2015)CrossRefGoogle Scholar
  19. 19.
    Wei, S., Yua, Y., Zhoua, M.: CO gas sensing of Pd-doped ZnO nanofibers synthesized by electrospinning method. Mater. Lett. 64(21), 2284–2286 (2010)CrossRefGoogle Scholar
  20. 20.
    Ishikawa, Y., Shimizu, Y., Sasaki, T., Koshizaki, N.: Preparation of zinc oxide nanorods using pulsed laser ablation in water media at high temperature. J. Colloid Interface Sci. 300, 612–615 (2006)CrossRefGoogle Scholar
  21. 21.
    Islam, S., Rahman, R.A., Othaman, Z., Riaz, S., Naseem, S.: Synthesis and characterization of hybrid matrix with encapsulated organic sensing dyes for pH sensing application. J. Ind. Eng. Chem. 20, 4408–4414 (2014)CrossRefGoogle Scholar
  22. 22.
    Kim, S.W., Nguyen, T.K., Thuan, D.V., Dang, D.K., Hur, S.H., Kim, E.J., Hahn, S.H.: Polyol-mediated synthesis of ZnO nanoparticle-assembled hollow spheres/nanorods and their photoanode performances. Korean J. Chem. Eng. 34(2), 495–499 (2017)CrossRefGoogle Scholar
  23. 23.
    Singh, R., Yadav, B.C.: Synthesis and characterization of copper doped tin oxide for humidity sensing applications. Adv. Sci. Lett. 20, 895–902 (2014)CrossRefGoogle Scholar
  24. 24.
    Fadhil, F.A., Hadi, I.H.: Preparation and characterization of zinc oxide n anoparticles by laser ablation of zinc in isopropanol. Eng. Tech J. 33(5), 791–798 (2015)Google Scholar
  25. 25.
    Arfat, Y.A., Ahmed, J., Hazza, A.A., Jacob, H., Joseph, A.: Comparative effects of untreated and 3-methacryloxypropyltrimethoxysilane treated ZnO nanoparticle reinforcement on properties of polylactide based nanocomposite films. Int. J. Biol. Macromol. 101, 1041–1050 (2017)CrossRefGoogle Scholar
  26. 26.
    Busila, M., Musat, V., Textorb, T., Mahltig, B.: Synthesis and characterization of antimicrobial textile finishing based on Ag:ZnO nanoparticles/chitosan biocomposites. RSC Adv. 5, 21562–21571 (2015)CrossRefGoogle Scholar
  27. 27.
    N. M. El-Ashgar, A. I. El-Basioni, I. M. El-Nahhal, S. M. Zourob, T. M. El-Agez, S. A. Taya, Sol-Gel thin films immobilized with bromocresol purple pH-sensitive indicator in presence of surfactants. ISRN Analytical Chemistry, 2012, Article ID 604389, 11 pagesGoogle Scholar
  28. 28.
    Chandrappa, K.G., Venkatesha, T.V.: Electrochemical synthesis and photocatalytic property of zinc oxide nanoparticles. Nano-Micro Lett. 4(1), 14–24 (2012)CrossRefGoogle Scholar

Copyright information

© Australian Ceramic Society 2018

Authors and Affiliations

  • Shumaila Islam
    • 1
  • Hazri Bakhtiar
    • 1
  • Khaldoon N. Abbas
    • 2
  • Saira Riaz
    • 3
  • Shahzad Naseem
    • 3
  • Abdul Rahman Bin Johari
    • 1
  1. 1.Laser Centre, Ibnu Sina Institute for Scientific and Industrial ResearchUniversiti Teknologi MalaysiaSkudaiMalaysia
  2. 2.Faculty of Science, Physics DepartmentAl-Mustansiriya UniversityBaghdadIraq
  3. 3.Centre of Excellence in Solid State PhysicsUniversity of the PunjabLahorePakistan

Personalised recommendations