The unsteady flow of generalized hybrid nanofluids: applications in cementitious materials
- 68 Downloads
Abstract
Since the introduction of reinforced concrete as a structural material, the construction industry has made remarkable progress. The addition of nanoparticles will result in a stronger, more durable, self-healing, fire-resistant, easy to clean, and rapid compaction of the cementitious material. Some of the nanoparticles that could be used for these features are nano silica, aluminum oxide, nanostructured metals, carbon nanotubes, and carbon nanofibers (CNFs). In this article, the mathematical problem is modeled for hybrid nanofluids and generalized by using the concept of Caputo-Fabrizio fractional derivatives, and its application in the cementitious materials is studied theoretically. The problem is solved using the Laplace transform technique. The results show that by adding the Al2O3 nanoparticles and MWCNTs, the binding strength of the cement may be enhanced. Moreover, the effects of Al2O3 nanoparticles and MWCNTs are also discussed separately. Graphs are drawn for different volume fractions of nanoparticles and MWCNTs and discussed physically.
Keywords
Hybrid nanofluids Cementitious materials Cohesion strength Exact solutions Fractional modelReferences
- 1.Han, B., Sun, S., Ding, S., Zhang, L., Yu, X., Ou, J.: Review of nanocarbon-engineered multifunctional cementitious composites. Compos A: Appl Sci Manuf. 70, 69–81 (2015)CrossRefGoogle Scholar
- 2.Makar, J.M., Beaudoin, J.J.: Carbon nanotubes and their application in the construction industry. Spec Publ R Soc Chem. 292, 331–342 (2004)Google Scholar
- 3.Li, G.: Properties of high-volume fly ash concrete incorporating nano-SiO2. Cem Concr Res. 34(6), 1043–1049 (2004)CrossRefGoogle Scholar
- 4.Kuder, K.G., Shah, S.P.: Processing of high-performance fiber-reinforced cement-based composites. Constr Build Mater. 24(2), 181–186 (2010)CrossRefGoogle Scholar
- 5.Xu, S., Li, Q.: Theoretical analysis on bending behavior of functionally graded composite beam crack-controlled by ultrahigh toughness cementitious composites. Sci China Ser E Technol Sci. 52(2), 363–378 (2009)CrossRefGoogle Scholar
- 6.VC, L.I., L. C., Y.: Theory of steady state and multiple cracking of random discontinuous fiber reinforced brittle matrix composites. J Eng Mech I. 992(11), 2246–2264Google Scholar
- 7.Okeil, A.M., El-Tawil, S., Shahawy, M.: Flexural reliability of reinforced concrete bridge girders strengthened with carbon fiber-reinforced polymer laminates. J Bridg Eng. 7(5), 290–299 (2002)CrossRefGoogle Scholar
- 8.Lim, T.Y., Paramasivam, P., Lee, S.L.: Analytical model for tensile behavior of steel-fiber concrete. Mater J. 84(4), 286–298 (1987)Google Scholar
- 9.Zweben, C.: Tensile failure of fiber composites. AIAA J. 6(12), 2325–2331 (1968)CrossRefGoogle Scholar
- 10.Li, G.Y., Wang, P.M., Zhao, X.: Pressure-sensitive properties and microstructure of carbon nanotube reinforced cement composites. Cem Concr Compos. 29(5), 377–382 (2007)CrossRefGoogle Scholar
- 11.Park, J.M., Kim, P.G., Wang, Z.J., Kwon, D.J., De Vries, K.L.: Interfacial evaluation and self-sensing of single micro-carbon fiber/CNF–brittle-cement composites using electro-micromechanical tests and acoustic emission. Adv Compos Mater. 20(2), 149–168 (2011)CrossRefGoogle Scholar
- 12.Chaipanich, A., Nochaiya, T., Wongkeo, W., Torkittikul, P.: Compressive strength and microstructure of carbon nanotubes–fly ash cement composites. Mater Sci Eng A. 527(4–5), 1063–1067 (2010)CrossRefGoogle Scholar
- 13.Fragneaud, B., Masenelli-Varlot, K., Gonzalez-Montiel, A., Terrones, M., Cavaillé, J.Y.: Mechanical behavior of polystyrene grafted carbon nanotubes/polystyrene nanocomposites. Compos Sci Technol. 68(15–16), 3265–3271 (2008)CrossRefGoogle Scholar
- 14.Hernández-Pérez, A., Avilés, F., May-Pat, A., Valadez-González, A., Herrera-Franco, P.J., Bartolo-Pérez, P.: Effective properties of multiwalled carbon nanotube/epoxy composites using two different tubes. Compos Sci Technol. 68(6), 1422–1431 (2008)CrossRefGoogle Scholar
- 15.Pantano, A., Modica, G., Cappello, F.: Multiwalled carbon nanotube reinforced polymer composites. Mater Sci Eng A. 486(1–2), 222–227 (2008)CrossRefGoogle Scholar
- 16.Pham, G.T., Park, Y.B., Liang, Z., Zhang, C., Wang, B.: Processing and modeling of conductive thermoplastic/carbon nanotube films for strain sensing. Compos Part B. 39(1), 209–216 (2008)CrossRefGoogle Scholar
- 17.Popov, V.N.: Carbon nanotubes: properties and application. Mater Sci Eng R Rep. 43(3), 61–102 (2004)CrossRefGoogle Scholar
- 18.Grávalos, J., Mieres, J. M., González, S., de Miguel, Y., Porro, A., & Bartos, P.: A new generation of construction materials: carbon nanotubes incorporated to concrete and polymeric matrix. In NICOM 2: 2nd International Symposium on Nanotechnology in Construction (pp. 215–221). RILEM Publications SARL (2006)Google Scholar
- 19.Xiang, X. J., Torwald, T. L., Staedler, T., & Trettin, R. H.: Carbon nanotubes as a new reinforcement material for modern cement-based binders. In NICOM 2: 2nd International Symposium on Nanotechnology in Construction (pp. 209–213). RILEM Publications SARL (2006)Google Scholar
- 20.Wegner, T. H., Winandy, J. E., & Ritter, M. A.: Nanotechnology opportunities in residential and non-residential Construction In 2nd International Symposium on Nanotechnology in Construction, Bilbao, Spain (Vol. 8) (2005)Google Scholar
- 21.Nasiri, A., Rashidi, A., Shariaty-Niasar, M., & Soltanian, H.: Preparation and application of carbon nanotube nanofluid as a reinforcement of cement slurry. Google Scholar (2013)Google Scholar
- 22.Musso, S., Tulliani, J.M., Ferro, G., Tagliaferro, A.: Influence of carbon nanotubes structure on the mechanical behavior of cement composites. Compos Sci Technol. 69(11–12), 1985–1990 (2009)CrossRefGoogle Scholar
- 23.Makar, J., Margeson, J., & Luh, J. (2005). Carbon nanotube/cement composites-early results and potential applications. CONFERENCE ON CONSTRUCTION MATERIALSGoogle Scholar
- 24.Shah, S. P., Konsta-Gdoutos, M. S., Metaxa, Z. S., & Mondal, P.: Nanoscale modification of cementitious materials. In Nanotechnology in Construction 3 (pp. 125–130). Springer, Berlin, Heidelberg (2009)Google Scholar
- 25.Hadi, A. A. A.: Nanoparticles concentration and environmental effects on cogeneration system in cement industry. International · Journal of Engineering Research and General Science. 3(5), 786–798 (2015)Google Scholar
- 26.Nazari, A., Riahi, S., Riahi, S., Shamekhi, S.F., Khademno, A.: Influence of Al 2 O 3 nanoparticles on the compressive strength and workability of blended concrete. J Am Sci. 6(5), 6–9 (2010)Google Scholar
- 27.Li, H., Xiao, H.G., Yuan, J., Ou, J.: Microstructure of cement mortar with nano-particles. Compos Part B: Eng. 35(2), 185–189 (2004)CrossRefGoogle Scholar
- 28.Radulovic, J., Nikolic, D., Blagojevic, M., Miletic, I., & Vaskovic, M.: A review of new materials used for building integrated systems. In First International Conference on Building Integrated Renewable Energy Systems BIRES (2017)Google Scholar
- 29.Han, Z.H., Yang, B., Kim, S.H., Zachariah, M.R.: Application of hybrid sphere/carbon nanotube particles in nanofluids. Nanotechnology. 18(10), 105–701 (2007)CrossRefGoogle Scholar
- 30.Devi, S.A., Devi, S.S.U.: Numerical investigation of hydromagnetic hybrid cu–Al 2 O 3/water nanofluid flow over a permeable stretching sheet with suction. Int J Nonlin Sci Num Simul. 17(5), 249–257 (2016)Google Scholar
- 31.Baby, T.T., Ramaprabhu, S.: Experimental investigation of the thermal transport properties of a carbon nanohybrid dispersed nanofluid. Nanoscale. 3(5), 2208–2214 (2011)CrossRefGoogle Scholar
- 32.Huang, D., Wu, Z., Sunden, B.: Effects of hybrid nanofluid mixture in plate heat exchangers. Exp Thermal Fluid Sci. 72, 190–196 (2016)CrossRefGoogle Scholar
- 33.Esfe, M.H., Wongwises, S., Naderi, A., Asadi, A., Safaei, M.R., Rostamian, H., et al.: Thermal conductivity of Cu/TiO2–water/EG hybrid nanofluid: experimental data and modeling using artificial neural network and correlation. Int Commun Heat Mass Transfer. 66, 100–104 (2015)CrossRefGoogle Scholar
- 34.Abro, K. A., Chandio, A. D., Abro, I. A., & Khan, I.: Dual thermal analysis of magnetohydrodynamic flow of nanofluids via modern approaches of Caputo–Fabrizio and Atangana–Baleanu fractional derivatives embedded in porous medium. J Thermal Anal Calorimetry. 1–11 (2018). https://doi.org/10.1007/s10973-018-7302-z
- 35.Abro, K. A., Abro, I. A., Almani, S. M., & Khan, I.: On the thermal analysis of magnetohydrodynamic Jeffery fluid via modern non integer order derivative. J King Saud Univ-Sci. (2018). https://doi.org/10.1016/j.jksus.2018.07.012
- 36.Abro, K.A., Hussain, M., Baig, M.M.: An analytic study of molybdenum disulfide nanofluids using the modern approach of Atangana-Baleanu fractional derivatives. Eur Phys J Plus. 132(10), 439 (2017)CrossRefGoogle Scholar
- 37.Abro, K.A., Memon, A.A., Uqaili, M.A.: A comparative mathematical analysis of RL and RC electrical circuits via Atangana-Baleanu and Caputo-Fabrizio fractional derivatives. Eur Phys J Plus. 133(3), 113 (2018)CrossRefGoogle Scholar
- 38.Zayernouri, M., Karniadakis, G.E.: Fractional spectral collocation methods for linear and nonlinear variable order FPDEs. J Comput Phys. 293, 312–338 (2015)CrossRefGoogle Scholar
- 39.Zayernouri, M., Ainsworth, M., Karniadakis, G.E.: A unified Petrov–Galerkin spectral method for fractional PDEs. Comput Methods Appl Mech Eng. 283, 1545–1569 (2015)CrossRefGoogle Scholar
- 40.Khanafer, K., Vafai, K.: A review on the applications of nanofluids in solar energy field. Renew Energy. 123, 398–406 (2018)CrossRefGoogle Scholar
- 41.Hjerrild, N. E., Scott, J. A., Amal, R., & Taylor, R. A.: Exploring the effects of heat and UV exposure on glycerol-based Ag-SiO 2 nanofluids for PV/T applications. Renew Energy. 120, 266–274 (2018)Google Scholar
- 42.Addad, Y., Abutayeh, M., Abu-Nada, E.: Effects of nanofluids on the performance of a PCM-based thermal energy storage system. J Energy Eng. 143(4), 04017006 (2017)CrossRefGoogle Scholar
- 43.Khodabandeh, E., Safaei, M.R., Akbari, S., Akbari, O.A., Alrashed, A.A.: Application of nanofluid to improve the thermal performance of horizontal spiral coil utilized in solar ponds: Geometric study. Renew Energy. 122, 1–16 (2018)CrossRefGoogle Scholar
- 44.Sheikh, N.A., Ali, F., Khan, I., Gohar, M., Saqib, M.: On the applications of nanofluids to enhance the performance of solar collectors: a comparative analysis of Atangana-Baleanu and Caputo-Fabrizio fractional models. Eur Phys J Plus. 132(12), 540 (2017)CrossRefGoogle Scholar
- 45.Aman, S., Khan, I., Ismail, Z., Salleh, M.Z., Al-Mdallal, Q.M.: Heat transfer enhancement in free convection flow of CNTs Maxwell nanofluids with four different types of molecular liquids. Sci Rep. 7(1), 2445 (2017)CrossRefGoogle Scholar
- 46.Sheikh, N.A., Ali, F., Khan, I., Gohar, M.: A theoretical study on the performance of a solar collector using CeO2 and Al2O3 water based nanofluids with inclined plate: Atangana–Baleanu fractional model. Chaos, Solitons Fractals. 115, 135–142 (2018)CrossRefGoogle Scholar
- 47.Magyari, E., Pantokratoras, A.: Note on the effect of thermal radiation in the linearized Rosseland approximation on the heat transfer characteristics of various boundary layer flows. Int Commun Heat Mass Transfer. 38(5), 554–556 (2011)CrossRefGoogle Scholar
- 48.Karahan, O., Hossain, K.M., Ozbay, E., Lachemi, M., Sancak, E.: Effect of metakaolin content on the properties self-consolidating lightweight concrete. Constr Build Mater. 31, 320–325 (2012)CrossRefGoogle Scholar
- 49.Jayapalan, A.R., Lee, B.Y., Kurtis, K.E.: Can nanotechnology be ‘green’? Comparing efficacy of nano and microparticles in cementitious materials. Cem Concr Compos. 36, 16–24 (2013)CrossRefGoogle Scholar
- 50.Ali, F., Sheikh, N.A., Khan, I., Saqib, M.: Magnetic field effect on blood flow of Casson fluid in axisymmetric cylindrical tube: a fractional model. J Magn Magn Mater. 423, 327–336 (2017)CrossRefGoogle Scholar
- 51.Ali, F., Sheikh, N. A., Khan, I., & Saqib, M.: Influence of a porous medium on the hydromagnetic free convection flow of micropolar fluid with radiative heat flux. J Porous Media, 21(2), 123–144 (2018).Google Scholar