Advertisement

Journal of the Australian Ceramic Society

, Volume 55, Issue 3, pp 657–666 | Cite as

The unsteady flow of generalized hybrid nanofluids: applications in cementitious materials

  • Madeha Gohar
  • Farhad AliEmail author
  • Ilyas Khan
  • Nadeem Ahmad Sheikh
  • Attaullah Shah
Research
  • 68 Downloads

Abstract

Since the introduction of reinforced concrete as a structural material, the construction industry has made remarkable progress. The addition of nanoparticles will result in a stronger, more durable, self-healing, fire-resistant, easy to clean, and rapid compaction of the cementitious material. Some of the nanoparticles that could be used for these features are nano silica, aluminum oxide, nanostructured metals, carbon nanotubes, and carbon nanofibers (CNFs). In this article, the mathematical problem is modeled for hybrid nanofluids and generalized by using the concept of Caputo-Fabrizio fractional derivatives, and its application in the cementitious materials is studied theoretically. The problem is solved using the Laplace transform technique. The results show that by adding the Al2O3 nanoparticles and MWCNTs, the binding strength of the cement may be enhanced. Moreover, the effects of Al2O3 nanoparticles and MWCNTs are also discussed separately. Graphs are drawn for different volume fractions of nanoparticles and MWCNTs and discussed physically.

Keywords

Hybrid nanofluids Cementitious materials Cohesion strength Exact solutions Fractional model 

References

  1. 1.
    Han, B., Sun, S., Ding, S., Zhang, L., Yu, X., Ou, J.: Review of nanocarbon-engineered multifunctional cementitious composites. Compos A: Appl Sci Manuf. 70, 69–81 (2015)CrossRefGoogle Scholar
  2. 2.
    Makar, J.M., Beaudoin, J.J.: Carbon nanotubes and their application in the construction industry. Spec Publ R Soc Chem. 292, 331–342 (2004)Google Scholar
  3. 3.
    Li, G.: Properties of high-volume fly ash concrete incorporating nano-SiO2. Cem Concr Res. 34(6), 1043–1049 (2004)CrossRefGoogle Scholar
  4. 4.
    Kuder, K.G., Shah, S.P.: Processing of high-performance fiber-reinforced cement-based composites. Constr Build Mater. 24(2), 181–186 (2010)CrossRefGoogle Scholar
  5. 5.
    Xu, S., Li, Q.: Theoretical analysis on bending behavior of functionally graded composite beam crack-controlled by ultrahigh toughness cementitious composites. Sci China Ser E Technol Sci. 52(2), 363–378 (2009)CrossRefGoogle Scholar
  6. 6.
    VC, L.I., L. C., Y.: Theory of steady state and multiple cracking of random discontinuous fiber reinforced brittle matrix composites. J Eng Mech I. 992(11), 2246–2264Google Scholar
  7. 7.
    Okeil, A.M., El-Tawil, S., Shahawy, M.: Flexural reliability of reinforced concrete bridge girders strengthened with carbon fiber-reinforced polymer laminates. J Bridg Eng. 7(5), 290–299 (2002)CrossRefGoogle Scholar
  8. 8.
    Lim, T.Y., Paramasivam, P., Lee, S.L.: Analytical model for tensile behavior of steel-fiber concrete. Mater J. 84(4), 286–298 (1987)Google Scholar
  9. 9.
    Zweben, C.: Tensile failure of fiber composites. AIAA J. 6(12), 2325–2331 (1968)CrossRefGoogle Scholar
  10. 10.
    Li, G.Y., Wang, P.M., Zhao, X.: Pressure-sensitive properties and microstructure of carbon nanotube reinforced cement composites. Cem Concr Compos. 29(5), 377–382 (2007)CrossRefGoogle Scholar
  11. 11.
    Park, J.M., Kim, P.G., Wang, Z.J., Kwon, D.J., De Vries, K.L.: Interfacial evaluation and self-sensing of single micro-carbon fiber/CNF–brittle-cement composites using electro-micromechanical tests and acoustic emission. Adv Compos Mater. 20(2), 149–168 (2011)CrossRefGoogle Scholar
  12. 12.
    Chaipanich, A., Nochaiya, T., Wongkeo, W., Torkittikul, P.: Compressive strength and microstructure of carbon nanotubes–fly ash cement composites. Mater Sci Eng A. 527(4–5), 1063–1067 (2010)CrossRefGoogle Scholar
  13. 13.
    Fragneaud, B., Masenelli-Varlot, K., Gonzalez-Montiel, A., Terrones, M., Cavaillé, J.Y.: Mechanical behavior of polystyrene grafted carbon nanotubes/polystyrene nanocomposites. Compos Sci Technol. 68(15–16), 3265–3271 (2008)CrossRefGoogle Scholar
  14. 14.
    Hernández-Pérez, A., Avilés, F., May-Pat, A., Valadez-González, A., Herrera-Franco, P.J., Bartolo-Pérez, P.: Effective properties of multiwalled carbon nanotube/epoxy composites using two different tubes. Compos Sci Technol. 68(6), 1422–1431 (2008)CrossRefGoogle Scholar
  15. 15.
    Pantano, A., Modica, G., Cappello, F.: Multiwalled carbon nanotube reinforced polymer composites. Mater Sci Eng A. 486(1–2), 222–227 (2008)CrossRefGoogle Scholar
  16. 16.
    Pham, G.T., Park, Y.B., Liang, Z., Zhang, C., Wang, B.: Processing and modeling of conductive thermoplastic/carbon nanotube films for strain sensing. Compos Part B. 39(1), 209–216 (2008)CrossRefGoogle Scholar
  17. 17.
    Popov, V.N.: Carbon nanotubes: properties and application. Mater Sci Eng R Rep. 43(3), 61–102 (2004)CrossRefGoogle Scholar
  18. 18.
    Grávalos, J., Mieres, J. M., González, S., de Miguel, Y., Porro, A., & Bartos, P.: A new generation of construction materials: carbon nanotubes incorporated to concrete and polymeric matrix. In NICOM 2: 2nd International Symposium on Nanotechnology in Construction (pp. 215–221). RILEM Publications SARL (2006)Google Scholar
  19. 19.
    Xiang, X. J., Torwald, T. L., Staedler, T., & Trettin, R. H.: Carbon nanotubes as a new reinforcement material for modern cement-based binders. In NICOM 2: 2nd International Symposium on Nanotechnology in Construction (pp. 209–213). RILEM Publications SARL (2006)Google Scholar
  20. 20.
    Wegner, T. H., Winandy, J. E., & Ritter, M. A.: Nanotechnology opportunities in residential and non-residential Construction In 2nd International Symposium on Nanotechnology in Construction, Bilbao, Spain (Vol. 8) (2005)Google Scholar
  21. 21.
    Nasiri, A., Rashidi, A., Shariaty-Niasar, M., & Soltanian, H.: Preparation and application of carbon nanotube nanofluid as a reinforcement of cement slurry. Google Scholar (2013)Google Scholar
  22. 22.
    Musso, S., Tulliani, J.M., Ferro, G., Tagliaferro, A.: Influence of carbon nanotubes structure on the mechanical behavior of cement composites. Compos Sci Technol. 69(11–12), 1985–1990 (2009)CrossRefGoogle Scholar
  23. 23.
    Makar, J., Margeson, J., & Luh, J. (2005). Carbon nanotube/cement composites-early results and potential applications. CONFERENCE ON CONSTRUCTION MATERIALSGoogle Scholar
  24. 24.
    Shah, S. P., Konsta-Gdoutos, M. S., Metaxa, Z. S., & Mondal, P.: Nanoscale modification of cementitious materials. In Nanotechnology in Construction 3 (pp. 125–130). Springer, Berlin, Heidelberg (2009)Google Scholar
  25. 25.
    Hadi, A. A. A.: Nanoparticles concentration and environmental effects on cogeneration system in cement industry. International · Journal of Engineering Research and General Science. 3(5), 786–798 (2015)Google Scholar
  26. 26.
    Nazari, A., Riahi, S., Riahi, S., Shamekhi, S.F., Khademno, A.: Influence of Al 2 O 3 nanoparticles on the compressive strength and workability of blended concrete. J Am Sci. 6(5), 6–9 (2010)Google Scholar
  27. 27.
    Li, H., Xiao, H.G., Yuan, J., Ou, J.: Microstructure of cement mortar with nano-particles. Compos Part B: Eng. 35(2), 185–189 (2004)CrossRefGoogle Scholar
  28. 28.
    Radulovic, J., Nikolic, D., Blagojevic, M., Miletic, I., & Vaskovic, M.: A review of new materials used for building integrated systems. In First International Conference on Building Integrated Renewable Energy Systems BIRES (2017)Google Scholar
  29. 29.
    Han, Z.H., Yang, B., Kim, S.H., Zachariah, M.R.: Application of hybrid sphere/carbon nanotube particles in nanofluids. Nanotechnology. 18(10), 105–701 (2007)CrossRefGoogle Scholar
  30. 30.
    Devi, S.A., Devi, S.S.U.: Numerical investigation of hydromagnetic hybrid cu–Al 2 O 3/water nanofluid flow over a permeable stretching sheet with suction. Int J Nonlin Sci Num Simul. 17(5), 249–257 (2016)Google Scholar
  31. 31.
    Baby, T.T., Ramaprabhu, S.: Experimental investigation of the thermal transport properties of a carbon nanohybrid dispersed nanofluid. Nanoscale. 3(5), 2208–2214 (2011)CrossRefGoogle Scholar
  32. 32.
    Huang, D., Wu, Z., Sunden, B.: Effects of hybrid nanofluid mixture in plate heat exchangers. Exp Thermal Fluid Sci. 72, 190–196 (2016)CrossRefGoogle Scholar
  33. 33.
    Esfe, M.H., Wongwises, S., Naderi, A., Asadi, A., Safaei, M.R., Rostamian, H., et al.: Thermal conductivity of Cu/TiO2–water/EG hybrid nanofluid: experimental data and modeling using artificial neural network and correlation. Int Commun Heat Mass Transfer. 66, 100–104 (2015)CrossRefGoogle Scholar
  34. 34.
    Abro, K. A., Chandio, A. D., Abro, I. A., & Khan, I.: Dual thermal analysis of magnetohydrodynamic flow of nanofluids via modern approaches of Caputo–Fabrizio and Atangana–Baleanu fractional derivatives embedded in porous medium. J Thermal Anal Calorimetry. 1–11 (2018).  https://doi.org/10.1007/s10973-018-7302-z
  35. 35.
    Abro, K. A., Abro, I. A., Almani, S. M., & Khan, I.: On the thermal analysis of magnetohydrodynamic Jeffery fluid via modern non integer order derivative. J King Saud Univ-Sci. (2018).  https://doi.org/10.1016/j.jksus.2018.07.012
  36. 36.
    Abro, K.A., Hussain, M., Baig, M.M.: An analytic study of molybdenum disulfide nanofluids using the modern approach of Atangana-Baleanu fractional derivatives. Eur Phys J Plus. 132(10), 439 (2017)CrossRefGoogle Scholar
  37. 37.
    Abro, K.A., Memon, A.A., Uqaili, M.A.: A comparative mathematical analysis of RL and RC electrical circuits via Atangana-Baleanu and Caputo-Fabrizio fractional derivatives. Eur Phys J Plus. 133(3), 113 (2018)CrossRefGoogle Scholar
  38. 38.
    Zayernouri, M., Karniadakis, G.E.: Fractional spectral collocation methods for linear and nonlinear variable order FPDEs. J Comput Phys. 293, 312–338 (2015)CrossRefGoogle Scholar
  39. 39.
    Zayernouri, M., Ainsworth, M., Karniadakis, G.E.: A unified Petrov–Galerkin spectral method for fractional PDEs. Comput Methods Appl Mech Eng. 283, 1545–1569 (2015)CrossRefGoogle Scholar
  40. 40.
    Khanafer, K., Vafai, K.: A review on the applications of nanofluids in solar energy field. Renew Energy. 123, 398–406 (2018)CrossRefGoogle Scholar
  41. 41.
    Hjerrild, N. E., Scott, J. A., Amal, R., & Taylor, R. A.: Exploring the effects of heat and UV exposure on glycerol-based Ag-SiO 2 nanofluids for PV/T applications. Renew Energy. 120, 266–274 (2018)Google Scholar
  42. 42.
    Addad, Y., Abutayeh, M., Abu-Nada, E.: Effects of nanofluids on the performance of a PCM-based thermal energy storage system. J Energy Eng. 143(4), 04017006 (2017)CrossRefGoogle Scholar
  43. 43.
    Khodabandeh, E., Safaei, M.R., Akbari, S., Akbari, O.A., Alrashed, A.A.: Application of nanofluid to improve the thermal performance of horizontal spiral coil utilized in solar ponds: Geometric study. Renew Energy. 122, 1–16 (2018)CrossRefGoogle Scholar
  44. 44.
    Sheikh, N.A., Ali, F., Khan, I., Gohar, M., Saqib, M.: On the applications of nanofluids to enhance the performance of solar collectors: a comparative analysis of Atangana-Baleanu and Caputo-Fabrizio fractional models. Eur Phys J Plus. 132(12), 540 (2017)CrossRefGoogle Scholar
  45. 45.
    Aman, S., Khan, I., Ismail, Z., Salleh, M.Z., Al-Mdallal, Q.M.: Heat transfer enhancement in free convection flow of CNTs Maxwell nanofluids with four different types of molecular liquids. Sci Rep. 7(1), 2445 (2017)CrossRefGoogle Scholar
  46. 46.
    Sheikh, N.A., Ali, F., Khan, I., Gohar, M.: A theoretical study on the performance of a solar collector using CeO2 and Al2O3 water based nanofluids with inclined plate: Atangana–Baleanu fractional model. Chaos, Solitons Fractals. 115, 135–142 (2018)CrossRefGoogle Scholar
  47. 47.
    Magyari, E., Pantokratoras, A.: Note on the effect of thermal radiation in the linearized Rosseland approximation on the heat transfer characteristics of various boundary layer flows. Int Commun Heat Mass Transfer. 38(5), 554–556 (2011)CrossRefGoogle Scholar
  48. 48.
    Karahan, O., Hossain, K.M., Ozbay, E., Lachemi, M., Sancak, E.: Effect of metakaolin content on the properties self-consolidating lightweight concrete. Constr Build Mater. 31, 320–325 (2012)CrossRefGoogle Scholar
  49. 49.
    Jayapalan, A.R., Lee, B.Y., Kurtis, K.E.: Can nanotechnology be ‘green’? Comparing efficacy of nano and microparticles in cementitious materials. Cem Concr Compos. 36, 16–24 (2013)CrossRefGoogle Scholar
  50. 50.
    Ali, F., Sheikh, N.A., Khan, I., Saqib, M.: Magnetic field effect on blood flow of Casson fluid in axisymmetric cylindrical tube: a fractional model. J Magn Magn Mater. 423, 327–336 (2017)CrossRefGoogle Scholar
  51. 51.
    Ali, F., Sheikh, N. A., Khan, I., & Saqib, M.: Influence of a porous medium on the hydromagnetic free convection flow of micropolar fluid with radiative heat flux. J Porous Media, 21(2), 123–144 (2018).Google Scholar

Copyright information

© Australian Ceramic Society 2018

Authors and Affiliations

  • Madeha Gohar
    • 1
    • 2
  • Farhad Ali
    • 3
    Email author
  • Ilyas Khan
    • 4
  • Nadeem Ahmad Sheikh
    • 3
  • Attaullah Shah
    • 5
  1. 1.Computational Analysis Research GroupTon Duc Thang UniversityHo Chi Minh CityVietnam
  2. 2.Faculty of Mathematics and StatisticsTon Duc Thang UniversityHo Chi Minh CityVietnam
  3. 3.Department of MathematicsCity University of Science and Information TechnologyPeshawarPakistan
  4. 4.Basic Engineering Sciences DepartmentCollege of Engineering Majmaah UniversityMajmaahSaudi Arabia
  5. 5.Department of Civil EngineeringCity University of Science and Information TechnologyPeshawarPakistan

Personalised recommendations