Highly permeable photo-catalytic mesoporous aluminum oxide membrane for oil emulsion separation

  • Nur Farhah Adlina Nor Azmi
  • Norfazliana Abdullah
  • Mohamad Zahir Mohd Pauzi
  • Mukhlis A. RahmanEmail author
  • Khairul Hamimah Abas
  • Azian Abd Aziz
  • Mohd Hafiz Dzarfan Othman
  • Juhana Jaafar
  • Ahmad Fauzi Ismail


This work describes the development of photocatalytic mesoporous aluminum oxide (alumina) membranes for oil emulsion separation. The mesoporous alumina membrane was deposited on alumina hollow fiber using hydrothermal synthesis. Aluminum nitrate nonahydrate, Al(NO3)3.9H2O, cetyltrimethylammonium bromide (CTAB), and urea were used in the preparation of the mesoporous alumina membranes. The successfully prepared mesoporous alumina membranes on ceramic support were then deposited with copper-doped ceria, which acted as photocatalyts, using the sol-gel Pechini method. The results showed that the membranes had an excellent separation performance in separating 1000 ppm polyethylene glycol and 1000 ppm bovine serum albumin when the samples were calcined at 800 °C. Under UV irradiation, there was a remarkable increase in the permeability of water through the membrane. The photocatalytic mesoporous alumina membrane showed a permeability of 1422 L/h m2 bar with 92% oil emulsion rejection. An excellent increase in the performance can be associated with the production of superoxide radical and hydroxyl radicals by the photocatalytic membrane once exposed to UV light.


Mesoporous alumina membrane Hydrothermal synthesis Photocatalyst Oil emulsion 



We acknowledge the technical support of the UTM Research Management Centre.

Funding information

The authors gratefully thank the financial support from various parties, namely, the Malaysia Ministry of Higher Education (MOHE) through FRGS (0.J130000.7823.4F947), the Higher Institution Centre of Excellence (HICoE) Research Grant (R. J090301.7846.4 J178), and Universiti Teknologi Malaysia (UTM) through the Research University grant (Q.J130000.2546.16H34). Appreciation also goes to UTM Research Management Centre for the financial support.


  1. 1.
    Garmsiri, E., Rasouli, Y., Abbasi, M., Izadpanah: Chemical cleaning of mullite ceramic microfiltration membranes which are fouled during oily wastewater treatment. J Water Process Eng. 19, 81–95 (2017)CrossRefGoogle Scholar
  2. 2.
    Lu, D., Zhang, T., Ma, J.: Ceramic membrane fouling during ultrafiltration of oil/water emulsions: roles played by stabilization surfactants of oil droplets. Environ Sci Technol. 49, 4235–4244 (2015)CrossRefGoogle Scholar
  3. 3.
    Peng, Y., Guo, F., Wen, Q., Yang, F., Guo, Z.: A novel polyacrylonitrile membrane with a high flux for emulsified oil/water separation. Sep Purif Technol. 184, 72–78 (2017)CrossRefGoogle Scholar
  4. 4.
    Zhu, Y., Wang, D., Jiang, L., Jin, J.: Recent progress in developing advanced membranes for emulsified oil/water separation. NPG Asia Mater. 6, e101 (2014)CrossRefGoogle Scholar
  5. 5.
    Chen, X., Hong, L., Xu, Y., Ong, Z.W.: Ceramic pore channels with inducted carbon nanotubes for removing oil from water. ACS Appl Mater Interfaces. 4, 1909–1918 (2012)CrossRefGoogle Scholar
  6. 6.
    Padaki, M., Murali, R.S., Abdullah, M.S., Misdan, N., Moslehyani, A., Kassim, M.A., Hilal, N., Ismail, A.F.: Membrane technology enhancement in oil–water separation. A review. Desalination. 357, 197–207 (2015)CrossRefGoogle Scholar
  7. 7.
    Hubadillah, S.K., Othman, M.H.D., Harun, Z., Ismail, A.F., Rahman, M.A., Jaafar, J., Jamil, S.M., Mohtor, N.H.: Superhydrophilic, low cost kaolin-based hollow fibre membranes for efficient oily-wastewater separation. Mater Lett. 191, 119–122 (2017)CrossRefGoogle Scholar
  8. 8.
    Rasouli, Y., Abbasi, M., Hashemifard, S.A.: Investigation of in-line coagulation-MF hybrid process for oily wastewater treatment by using novel ceramic membranes. J Clean Prod. 161, 545–559 (2017)CrossRefGoogle Scholar
  9. 9.
    Yeom, H., Chang, S., Kim, Y., Song, I.: Processing of alumina-coated clay–diatomite composite membranes for oily wastewater treatment. Ceram Int. 42, 5024–5035 (2016)CrossRefGoogle Scholar
  10. 10.
    Zhong, Z., Xing, W., Zhang, B.: Fabrication of ceramic membranes with controllable surface roughness and their applications in oil/water separation. Ceram Int. 39, 4355–4361 (2013)CrossRefGoogle Scholar
  11. 11.
    Kumar, P., Guliants, V.V.: Periodic mesoporous organic–inorganic hybrid materials: applications in membrane separations and adsorption. Microporous Mesoporous Mater. 132, 1–14 (2010)CrossRefGoogle Scholar
  12. 12.
    Liu, F., Zheng, X., Chen, J., Zheng, Y., Jiang, L.: Controlling the synthesis and application of nanocrystalline spherical and ordered mesoporous alumina with high thermal stability. RSC Adv. 5, 93917–93925 (2015)CrossRefGoogle Scholar
  13. 13.
    Peng, Z.Z., Benjing, B., Yan, X.Z.: Synthesis of mesoporous alumina TUD-1 with high thermostability. J Porous Mater. 13, 245–250 (2006)CrossRefGoogle Scholar
  14. 14.
    Ahmad, R., Kim, J.K., Kim, J.H., Kim, J.: Well-organized, mesoporous nanocrystalline TiO2 on alumina membranes with hierarchical architecture: antifouling and photocatalytic activities. Catal Today. 282, 2–12 (2017)Google Scholar
  15. 15.
    Gnayem, H., Dandapat, A., Sasson, Y.: Development of hybrid BiOCl x Br 1− x -embedded alumina films and their application as highly efficient visible-light-driven photocatalytic reactors. Chem- A Eur J. 22, 370–375 (2016)CrossRefGoogle Scholar
  16. 16.
    Abdullah, N., Rahman, M.A., Othman, M.H.D., Ismail, A.F., Jaafar, J., Aziz, A.A.: Preparation and characterization of self-cleaning alumina hollow fiber membrane using the phase inversion and sintering technique. Ceram Int. 42, 12312–12322 (2016)CrossRefGoogle Scholar
  17. 17.
    Abdullah, N., Rahman, M.A., Ismail, A.F., Othman, M.H.D., Jaafar, J.: Preparation of ceramic hollow fiber membrane using phase inversion and sintering technique. Adv Mater Res. 1133, 141–145 (2016)CrossRefGoogle Scholar
  18. 18.
    Liu, Q., Wang, A., Wang, X., Zhang, T.: Morphologically controlled synthesis of mesoporous alumina. Microporous Mesoporous Mater. 100, 35–44 (2007)CrossRefGoogle Scholar
  19. 19.
    Liu, S., Li, K., Hughes, R.: Preparation of porous aluminium oxide (Al2O3) hollow fibre membranes by a combined phase-inversion and sintering method. Ceram Int. 29, 875–881 (2003)CrossRefGoogle Scholar
  20. 20.
    Amrousse, R., Choklati, A., Lizoul, B., Bachar, A., Follet-Houttemane, C., Hori, K.: Deposition of mesoporous activated powder alumina on SiC ceramic foam substrates by an in-situ hydrothermal technique. Powder Technol. 247, 231–234 (2013)CrossRefGoogle Scholar
  21. 21.
    Paiman, S.H., Rahman, M.A., Othman, M.H.D., Ismail, A.F., Jaafar, J., Aziz, A.A.: Morphological study of Yttria-stabilized zirconia hollow fibre membrane prepared using phase inversion/sintering technique. Ceram Int. 41, 12543–12553 (2015)CrossRefGoogle Scholar
  22. 22.
    Dzinun, H., Othman, M.H.D., Ismail, A.F., Puteh, M.H., Rahman, M.A., Jaafar, J.: Performance evaluation of co-extruded microporous dual-layer hollow fiber membranes using a hybrid membrane photoreactor. Desalination. 403, 46–52 (2017)CrossRefGoogle Scholar

Copyright information

© Australian Ceramic Society 2018

Authors and Affiliations

  • Nur Farhah Adlina Nor Azmi
    • 1
  • Norfazliana Abdullah
    • 1
  • Mohamad Zahir Mohd Pauzi
    • 1
  • Mukhlis A. Rahman
    • 1
    Email author
  • Khairul Hamimah Abas
    • 2
  • Azian Abd Aziz
    • 3
  • Mohd Hafiz Dzarfan Othman
    • 1
  • Juhana Jaafar
    • 1
  • Ahmad Fauzi Ismail
    • 1
  1. 1.Advanced Membrane Technology Research Centre (AMTEC)Universiti Teknologi MalaysiaSkudaiMalaysia
  2. 2.Faculty of Electrical EngineeringUniversiti Teknologi MalaysiaSkudaiMalaysia
  3. 3.Language AcademyUniversiti Teknologi MalaysiaSkudaiMalaysia

Personalised recommendations