Microwave-assisted processing of cobalt aluminate blue nano-ceramic pigment using sol–gel method
- 131 Downloads
Abstract
In the present research, CoAl2O4 nano-pigment powder was synthesized by a combination of citrate–gel processing and microwave-assisted heating route. Blue CoAl2O4 ceramic nano-pigment was rapidly obtained after calcination in microwave oven. Thermal decomposition behavior of the as-synthesized precursor was monitored by DTA/TGA (differential thermal analysis/thermo-gravimetric analysis). The effects of various microwave exposure times (8–15 min) on the phase composition and difference in color were evaluated through X-ray diffraction (XRD) and CIE Lab color space system, respectively. The mean crystallite size of blue nano-pigment powders was determined by the X-ray line broadening technique. The optimum time of pigment processing by utilizing microwave oven was obtained at 15 min to get a sufficiently intense blue color. Scanning electron microscopy (SEM) and field emission SEM (FE-SEM) characterizations were employed to observe the size and morphology of optimum powder particles. Particles size analysis by SEM indicated that the majority of quasi-spherical particles have a small size in the range of nano which was in agreement with XRD results, while FE-SEM studies confirmed flower-like morphology of as-prepared powder.
Keywords
Cobalt aluminate Nano-pigments Microwave processing Sol–gel methodNotes
Acknowledgements
The authors would like to thank Iran National Science Foundation (INSF) for financially supporting this research work under contract number of 94/sad/42699 on 9/11/2015.
References
- 1.Eastaugh, N., Walsh, V., Chaplin, T., Siddall, R.: The pigment compendium: a dictionary of historical pigments. Elsevier Butterworth-Heinemann, Amsterdam (2004)Google Scholar
- 2.Gettens, R.J., Stout, G.L.: Painting materials: a short encyclopedia. Dover Publications, New York (2011)Google Scholar
- 3.Tilley, R.J.D.: Colour and the optical properties of materials, 2nd edn. John Wiley & Sons, United Kingdom (2011)Google Scholar
- 4.Salavati-Niasari, M., Farhadi-Khouzani, M., Davar, F.: Bright blue pigment CoAl2O4 nanocrystals prepared by modified sol–gel method. J. Sol-Gel Sci. Technol. 52, 321–327 (2009)CrossRefGoogle Scholar
- 5.Li, W., Li, J., Guo, J.: Synthesis and characterization of nanocrystalline CoAl2O4 spinel powder by low temperature combustion. J. Eur. Ceram. Soc. 23, 2289–2295 (2003)CrossRefGoogle Scholar
- 6.Salem, S.: Effect of calcination temperature on colorant behavior of cobalt-aluminate nano-particles synthesized by combustion technique. J. Ind. Eng. Chem. 20, 818–823 (2014)CrossRefGoogle Scholar
- 7.Bernardi, M.I.B., Cava, S., Paiva-Santos, C.O., Leite, E.R., Paskocimas, C.A., Longo, E.: Comparison of blue pigments prepared by two different methods. J. Eur. Ceram. Soc. 22, 2911–2919 (2002)CrossRefGoogle Scholar
- 8.Marques, C.H., Mesquita, A., Araújo, V.D., Bernardi, M.I.B.: Influence of the pH on Al2O3:CuO pigments prepared by a polymeric precursor method. Mater. Res. 16, 100–104 (2013)CrossRefGoogle Scholar
- 9.Zayat, M., Levy, D.: Blue CoAl2O4 particles prepared by the sol−gel and citrate−gel methods. Chem. Mater. 12, 2763–2769 (2000)CrossRefGoogle Scholar
- 10.Duan, X., Pan, M., Yu, F., Yuan, D.: Synthesis, structure and optical properties of CoAl2O4 spinel nanocrystals. J. Alloys Compd. 509, 1079–1083 (2011)CrossRefGoogle Scholar
- 11.Gama, L., Ribeiro, M.A., Barros, B.S., Kiminami, R.H.A., Weber, I.T., Costa, A.C.F.M.: Synthesis and characterization of the NiAl2O4, CoAl2O4 and ZnAl2O4 spinels by the polymeric precursors method. J. Alloys Compd. 483, 453–455 (2009)CrossRefGoogle Scholar
- 12.Chen, Z., Shi, E., Li, W., Zheng, Y., Wu, N., Zhong, W.: Particle size comparison of hydrothermally synthesized cobalt and zinc aluminate spinels. J. Am. Ceram. Soc. 85, 2949–2955 (2002)CrossRefGoogle Scholar
- 13.Yu, F., Yang, J., Ma, J., Du, J., Zhou, Y.: Preparation of nanosized CoAl2O4 powders by sol–gel and sol–gel-hydrothermal methods. J. Alloys Compd. 468, 443–446 (2009)CrossRefGoogle Scholar
- 14.Lv, W., Qiu, Q., Wang, F., Wei, S., Liu, B., Luo, Z.: Sonochemical synthesis of cobalt aluminate nanoparticles under various preparation parameters. Ultrason. Sonochem. 17, 793–801 (2010)CrossRefGoogle Scholar
- 15.Busca, G., Lorenzelli, V., Bolis, V.: Preparation, bulk characterization and surface chemistry of high-surface-area cobalt aluminate. Mater. Chem. Phys. 31, 221–228 (1992)CrossRefGoogle Scholar
- 16.Ahmed, I.S., Shama, S.A., Moustafa, M.M., Dessouki, H.A., Ali, A.A.: Synthesis and spectral characterization of CoxMg1−xAl2O4 as new nano-coloring agent of ceramic pigment. Spectrochim. Acta A Mol. Biomol. Spectrosc. 74, 665–672 (2009)CrossRefGoogle Scholar
- 17.Ahmed, I.S.: A simple route to synthesis and characterization of CoAl2O4 nanocrystalline via combustion method using egg white (ovalbumine) as a new fuel. Mater. Res. Bull. 46, 2548–2553 (2011)CrossRefGoogle Scholar
- 18.Salem, S., Jazayeri, S.H., Bondioli, F., Allahverdi, A., Shirvani, M., Ferrari, A.M.: CoAl2O4 nano pigment obtained by combustion synthesis. Int. J. Appl. Ceram. Technol. 9, 968–978 (2012)CrossRefGoogle Scholar
- 19.Blanco, O., Lázaro, J.P.M., Rodríguez-Betancourtt, V.M., Gómez, J.R., Barrera, A.: Colloidal synthesis of CoAl2O4 nanoparticles using dodecylamine and their structural characterization. Superficies y Vacío. 29, 78–82 (2016)Google Scholar
- 20.Rajabi, M., Sale, F.R.: Synthesis and characterization of 2212 BSCCO superconducting materials via the gel processing route. Proceedings of the First European Ceramic Society Conference (ECers 89), pp. 2426–2430. Elsevier, Maastricht (1989)Google Scholar
- 21.Tizjang, V., Montazeri-Pour, M., Rajabi, M., Kari, M., Moghadas, S.: Surface modification of sol–gel synthesized TiO2 photo-catalysts for the production of core/shell structured TiO2–SiO2 nano-composites with reduced photo-catalytic activity. J. Mater. Sci. Mater. Electron. 26, 3008–3019 (2015)CrossRefGoogle Scholar
- 22.Nakamura, N., Seepaul, J., Kadane, J.B., Reeja-Jayan, B.: Design for low-temperature microwave-assisted crystallization of ceramic thin films. Appl. Stoch. Model Bus. Ind. 33, 314–321 (2017)CrossRefGoogle Scholar
- 23.Elsagh, M., Rajabi, M., Amini, E.: Characterization of SrAl2O4:Eu2+, Dy3+ phosphor nano-powders produced by microwave synthesis route. J. Mater. Sci. Mater. Electron. 25, 1612–1619 (2014)CrossRefGoogle Scholar
- 24.Wang, X.-j., Yang, W.-y., Li, F.-t., Xue, Y.-b., Liu, R.-h., Hao, Y.-j.: In situ microwave-assisted synthesis of porous N-TiO2/g-C3N4 heterojunctions with enhanced visible-light photocatalytic properties. Ind. Eng. Chem. Res. 52, 17140–17150 (2013)CrossRefGoogle Scholar
- 25.Baghbanzadeh, M., Carbone, L., Cozzoli, P.D., Kappe, C.O.: Microwave-assisted synthesis of colloidal inorganic nanocrystals. Angew Chem. Int. Ed. 50, 11312–11359 (2011)CrossRefGoogle Scholar
- 26.Johari, M., Rajabi, M., Mohammadi, V.: Production of SrAl2O4:Eu2+, Dy3+ green-emitting phosphor nano-pigment powders via microwave processing route. Pigm. Resin. Technol. 46, 85–91 (2017)CrossRefGoogle Scholar
- 27.Cullity, B.D.: Elements of X-ray diffraction, 2nd edn. Addison-Wesley, Massachusetts (1978)Google Scholar
- 28.Melgosa, M., Tremeau, A., Cui, G.: Colour difference evaluation. In: Fernandez-Maloigne, C. (ed.) Advanced color image processing and analysis, pp. 59–79. Springer, New York (2013)CrossRefGoogle Scholar
- 29.Granato, D., Masson, M.L.: Instrumental color and sensory acceptance of soy-based emulsions: a response surface approach. Cienc. Tecnol. Aliment. 30, 1090–1096 (2010)CrossRefGoogle Scholar
- 30.Kajinebaf, V.T., Rezaeian, F., Rajabi, M., Baghshahi, S., Siahpoush, S.M.: Effect of using nano-kaolin on synthesis time of ultramarine pigment. J. Basic Appl. Sci. Res. 3(1s), 293–298 (2013)Google Scholar
- 31.Grazenaite, E., Pinkas, J., Beganskiene, A., Kareiva, A.: Sol–gel and sonochemically derived transition metal (Co, Ni, Cu, and Zn) chromites as pigments: a comparative study. Ceram. Int. 42, 9402–9412 (2016)CrossRefGoogle Scholar
- 32.Obata, S., Kato, M., Yokoyama, H., Iwata, Y., Kikumoto, M., Sakurada, O.: Synthesis of nano CoAl2O4 pigment for ink-jet printing to decorate porcelain. J. Ceram. Soc. Jpn. 119, 208–213 (2011)CrossRefGoogle Scholar
- 33.Tielens, F., Calatayud, M., Franco, R., Recio, J.M., Pérez-Ramírez, J., Minot, C.: Theoretical investigation of the inversion parameter in Co3−sAlsO4 (s=0–3) spinel structures. Solid State Ion. 180, 1011–1016 (2009)CrossRefGoogle Scholar
- 34.Kurajica, S., Tkalčec, E., Gržeta, B., Iveković, D., Mandić, V., Popović, J., et al.: Evolution of structural and optical properties in the course of thermal evolution of sol–gel derived cobalt-doped gahnite. J. Alloys Compd. 509, 3223–3228 (2011)CrossRefGoogle Scholar
- 35.Wahba, A.M., Imam, N.G., Mohamed, M.B.: Flower-like morphology of blue and greenish-gray ZnCoxAl2-xO4 nanopigments. J. Mol. Struct. 1105, 61–69 (2016)CrossRefGoogle Scholar
- 36.Stangar, U.L., Orel, B., Krajnc, M.: Preparation and spectroscopic characterization of blue CoAl2O4 coatings. J. Sol-Gel Sci. Technol. 26, 771–775 (2003)CrossRefGoogle Scholar
- 37.Mindru, I., Marinescu, G., Gingasu, D., Patron, L., Ghica, C., Giurginca, M.: Blue CoAl2O4 spinel via complexation method. Mater. Chem. Phys. 122, 491–497 (2010)CrossRefGoogle Scholar
- 38.Abaide, E.R., Anchieta, C.G., Foletto, V.S., Reinehr, B., Nunes, L.F., Kuhn, R.C., et al.: Production of copper and cobalt aluminate spinels and their application as supports for inulinase immobilization. Mater. Res. 18, 1062–1069 (2015)CrossRefGoogle Scholar
- 39.Chadorbafzadeh, M., Baghshahi, S., Mohebi, M.M.: Synthesis and spectra characterization of CoxZn1-xAl2O4 nanosized pigments by gel combustion method. Ceram. – Silikáty. 56, 301–305 (2012)Google Scholar
- 40.Jafari, M., Hassanzadeh-Tabrizi, S.A.: Preparation of CoAl2O4 nanoblue pigment via polyacrylamide gel method. Powder Technol. 266, 236–239 (2014)CrossRefGoogle Scholar
- 41.Buxbaum, G., Pfaff, G.: Industrial inorganic pigments. WILEY-VCH Verlag GmbH, Weinheim (2005)CrossRefGoogle Scholar
- 42.Kari, M., Montazeri-Pour, M., Rajabi, M., Tizjang, V., Moghadas, S.: Maximum SiO2 layer thickness by utilizing polyethylene glycol as the surfactant in synthesis of core/shell structured TiO2–SiO2 nano-composites. J. Mater. Sci. Mater. Electron. 25, 5560–5569 (2014)CrossRefGoogle Scholar
- 43.Montazeri-Pour, M., Ataie, A.: Synthesis of nanocrystalline barium ferrite in ethanol/water media. J. Mater. Sci. Technol. 25, 465–469 (2009)Google Scholar
- 44.Montazeri-Pour, M., Ataie, A., Nikkhah-Moshaie, R.: Synthesis of nano-crystalline barium hexaferrite using a reactive co-precipitated precursor. IEEE Trans. Magn. 44, 4239–4242 (2008)CrossRefGoogle Scholar