Advertisement

Journal of the Australian Ceramic Society

, Volume 55, Issue 1, pp 187–200 | Cite as

In vitro bioactivity and corrosion resistance enhancement of Ti-6Al-4V by highly ordered TiO2 nanotube arrays

  • M. Sarraf
  • N. L. Sukiman
  • A. R. BushroaEmail author
  • B. Nasiri-TabriziEmail author
  • A. Dabbagh
  • N. H. Abu Kasim
  • W. J. Basirun
Research
  • 33 Downloads

Abstract

In the present study, the structural features, corrosion behavior, and in vitro bioactivity of TiO2 nanotubular arrays coated on Ti–6Al–4V (Ti64) alloy were investigated. For this reason, Ti64 plates were anodized in an ammonium fluoride electrolyte dissolved in a 90:10 ethylene glycol and water solvent mixture at room temperature under a constant potential of 60 V for 1 h. Subsequently, the anodized specimens were annealed in an argon gas furnace at 500 and 700 °C for 1.5 h with a heating and cooling rate of 5 °C min−1. From XRD analysis and Raman spectroscopy, a highly crystalline anatase phase with tetragonal symmetry was formed from the thermally induced crystallization at 500 °C. Besides, the Ti 2p3/2 and Ti 2p1/2 binding energies showed the presence of the Ti4+ oxidation state. According to the in vitro bioassay, the modified surface proved its outstanding capability in enhancing the bioactivity, where a thick layer of bone-like apatite was formed on the annealed TiO2 nanotube surface. In addition, the corrosion measurements indicated that the corrosion protection efficiency increased remarkably and reached 87% after annealing at 500 °C.

Graphical abstract

Surface modification of biomedical grade Ti64 alloy by the electrochemical anodization protocol.

Keywords

TiO2 nanotubes Anodization Ti–6Al–4V Corrosion resistance In vitro bioactivity 

Highlights

 Corrosion behavior and bioactivity of TiO2 nanotubes on Ti64 were investigated.

 Themodified surface showed an outstanding capability in enhancing the bioactivity.

 Corrosion protection efficiency increased remarkably after annealing at 500 °C.

 Ti 2p3/2 and Ti 2p1/2 components confirmed the existence of Ti4+ state.

Notes

Acknowledgements

The authors would like to acknowledge the University of Malaya for providing the necessary facilities and resources for this research. The authors are also grateful to Research Affairs of Islamic Azad University, Najafabad Branch for supporting this research.

Funding information

This research was fully funded by the University of Malaya with the high impact research grant numbers of RP032C-15AET and PG081-2014B.

References

  1. 1.
    Park, J.B., Lakes, R.S.: Biomaterials: an introduction. Springer, New York (2007)Google Scholar
  2. 2.
    Chen, Q., Thouas, G.A.: Metallic implant biomaterials. Mater. Sci. Eng. R. 87, 1–57 (2015)CrossRefGoogle Scholar
  3. 3.
    Biehl, V., Wack, T., Winter, S., Seyfert, U.T.: Evaluation of the haemocompatibility of titanium based biomaterials. J. Breme. Biomol. Eng. 19, 97–101 (2002)CrossRefGoogle Scholar
  4. 4.
    Zberg, B., Uggowitzer, P.J., Loeffler, J.F.: MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants. Nat. Mater. 8, 887–891 (2009)CrossRefGoogle Scholar
  5. 5.
    Rafieerad, A.R., Zalnezhad, E., Bushroa, A.R., Hamouda, A.M.S., Sarraf, M., Nasiri-Tabrizi, B.: Self-organized TiO2 nanotube layer on Ti–6Al–7Nb for biomedical application. Sur. Coat. Technol. 265, 24–31 (2015)CrossRefGoogle Scholar
  6. 6.
    Sarraf, M., Bushroa, A.R., Nasiri-Tabrizi, B., Dabbagh, A., Abu Kasim, N.H., Basirun, W.J., Bin Sulaiman, E.: Nanomechanical properties, wear resistance and in-vitro characterization of Ta2O5 nanotubes coating on biomedical grade Ti–6Al–4V. J Mech. Behav. Biomed. Mater. 66, 159–171 (2017)CrossRefGoogle Scholar
  7. 7.
    Liu, X., Chu, P.K., Ding, C.: Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater. Sci. Eng. R. 47, 49–121 (2004)CrossRefGoogle Scholar
  8. 8.
    Kurella, A., Dahotre, N.B.: Laser induced multi-scale textured zirconia coating on Ti-6Al-4V. J. Mater. Sci. Mater. Med. 17, 565–572 (2006)CrossRefGoogle Scholar
  9. 9.
    Guleryuz, H., Cimenoglu, H.: Surface modification of a Ti–6Al–4V alloy by thermal oxidation. Surf. Coat. Tech. 192, 164–170 (2005)CrossRefGoogle Scholar
  10. 10.
    Wang, L.-N., Jin, M., Zheng, Y., Guan, Y., Lu, X., Luo, J.-L.: Nanotubular surface modification of metallic implants via electrochemical anodization technique. Int. J. Nanomed. 9, 4421–4435 (2014)CrossRefGoogle Scholar
  11. 11.
    Zwilling, V., Aucouturier, M., Darque-Ceretti, E.: Anodic oxidation of titanium and TA6V alloy in chromic media. An electrochemical approach. Electrochim. Acta. 45, 921–929 (1999)CrossRefGoogle Scholar
  12. 12.
    Rafieerad, A.R., Bushroa, A.R., Zalnezhad, E., Sarraf, M., Basirun, W.J., Baradaran, S., Nasiri-Tabrizi, B.: Microstructural development and corrosion behavior of self-organized TiO2 nanotubes coated on Ti–6Al–7Nb. Ceram. Int. 41, 10844–10855 (2015)CrossRefGoogle Scholar
  13. 13.
    Shiyi, C., Qun, C., Mingqi, G., Shuo, Y., Rong, J., Xufei, Z.: Morphology evolution of TiO2 nanotubes by a slow anodization in mixed electrolytes. Surf. Coat. Tech. 321, 257–264 (2017)CrossRefGoogle Scholar
  14. 14.
    Yan, S., Chen, Y., Wang, Z., Han, A., Shan, Z., Yang, X., Zhu, X.: Essential distinction between one-step anodization and two-step anodization of Ti. Mater. Res. Bull. 95, 444–450 (2017)CrossRefGoogle Scholar
  15. 15.
    Sarraf, M., Razak, B.A., Dabbagh, A., Nasiri-Tabrizi, B., Kasim, N.H.A., Basirun, W.J.: Optimizing PVD conditions for electrochemical anodization growth of well-adherent Ta2O5 nanotubes on Ti–6Al–4V alloy. RSC Adv. 6, 78999–79015 (2016)CrossRefGoogle Scholar
  16. 16.
    Liu, K., Wang, G., Meng, M., Chen, S., Li, J., Sun, X., Yuan, H., Sun, L., Qin, N.: TiO2 nanotube photonic crystal fabricated by two-step anodization method for enhanced photoelectrochemical water splitting. Mater. Lett. 207, 96–99 (2017)CrossRefGoogle Scholar
  17. 17.
    Grimes, A.C., Mor, G.K.: TiO2 nanotube arrays: synthesis, properties, and applications. Springer Science & Business Media, (2009)Google Scholar
  18. 18.
    Mor, G.K., Varghese, O.K.: Fabrication of tapered, conical-shaped titania nanotubes. J. Mater. Res. 18, 2588–2593 (2003)CrossRefGoogle Scholar
  19. 19.
    Mor, G.K., Varghese, O.K., Paulose, M., Shankar, K., Grimes, C.A.: A review on highly ordered, vertically oriented TiO2 nanotube arrays: fabrication, material properties, and solar energy applications. Sol. Energ. Mater. Sol. Cells. 90, 2011–2075 (2006)CrossRefGoogle Scholar
  20. 20.
    LeGeros, R.Z.: Calcium phosphate-based osteoinductive materials. Chem. Rev. 108, 4742–4753 (2008)CrossRefGoogle Scholar
  21. 21.
    Lu, T., Qiao, Y., Liu, X.: Surface modification of biomaterials using plasma immersion ion implantation and deposition. Interface Focus. 2, 325–336 (2012)CrossRefGoogle Scholar
  22. 22.
    Jonasova, L., Muller, F.A., Helebrant, A., Strnad, J., Greil, P.: Biomimetic apatite formation on chemically treated titanium. Biomaterials. 25, 1187–1194 (2004)CrossRefGoogle Scholar
  23. 23.
    Oh, S., Finõnes, R.R., Daraio, C., Chen, L., Jin, S.: Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes. Biomaterials. 26, 4938–4943 (2005)CrossRefGoogle Scholar
  24. 24.
    Tsuchiya, H., Macak, J.M., Taveira, L., Ghicov, A., Schmuki, P.: Hydroxyapatite growth on anodic TiO2 nanotubes. J. Biomed. Mater. Res. 77, 534–541 (2006)CrossRefGoogle Scholar
  25. 25.
    Merritt, K., Brown, S.A.: Effect of proteins and pH on fretting corrosion and metal ion release. J. Biomed. Mater. Res. A. 22, 111–120 (1988)CrossRefGoogle Scholar
  26. 26.
    Williams, R.L., Brown, S.A., Merritt, K.: Electrochemical studies on the influence of proteins on the corrosion of implant alloys. Biomaterials. 9, 181–186 (1988)CrossRefGoogle Scholar
  27. 27.
    Knob, L.J., Olson, D.L.: ninth ed. Metals handbook: Corrosion, vol. 13, p. 669 (1987).Google Scholar
  28. 28.
    Mu, Y., Kobayashi, T., Sumita, M., Yamamoto, A., Hanawa, T.: Metal ion release from titanium with active oxygen species generated by rat macrophages in vitro. J. Biomed. Mater. Res. A. 49, 238–243 (2000)CrossRefGoogle Scholar
  29. 29.
    Browne, M., Gregson, P.J.: Effect of mechanical surface pretreatment on metal ion release. Biomaterials. 21, 385–392 (2000)CrossRefGoogle Scholar
  30. 30.
    Kulkarni, M., Mazare, A., Schmuki, P., Iglic, A.: Biomaterial surface modification of titanium and titanium alloys for medical applications. Nanomedicine. 111, 111–136 (2014)Google Scholar
  31. 31.
    Indira, K., Kamachi Mudali, U., Rajendran, N.: Corrosion behavior of electrochemically assembled nanoporous titania for biomedical applications. Ceram. Int. 39, 959–967 (2013)CrossRefGoogle Scholar
  32. 32.
    Huang, Q., Yung, Y., Hu, R., Lin, C., Sun, L., Vogler, E.A.: Reduced platelet adhesion and improved corrosion resistance of superhydrobhophic TiO2 nanotube coated 316L stainless steel. Colloids Surf. B Biointerface. 125, 34–141 (2015)CrossRefGoogle Scholar
  33. 33.
    Ogawa, T.: Ultraviolet photofunctionalization of titanium implants. Int. J. Oral Maxillofac. Implants. 29, 95–102 (2014)CrossRefGoogle Scholar
  34. 34.
    Yu, Y.H., Lin, Y.Y., Lin, C.H., Chan, C.C., Huang, Y.C.: High-performance polystyrene-/graphene-based nanocomposites with excellent anti-corrosion properties. Polym. Chem. 5, 535–550 (2014)CrossRefGoogle Scholar
  35. 35.
    Kokubo, T., Takadama, H.: How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 27, 2907–2915 (2006)CrossRefGoogle Scholar
  36. 36.
    Bayraktar, D., Tas, A.C.: Chemical preparation of carbonated calcium hydroxyapatite powders at 37 C in urea-containing synthetic body fluids. J. Eur. Ceram. Soc. 19, 2573–2579 (1999)CrossRefGoogle Scholar
  37. 37.
    Beranek, R., Hildebrand, H., Schmuki, P.: Self-organized porous titanium oxide prepared in H2SO4/HF electrolytes. Electrochem. Solid State Lett. 6, B12–B14 (2003)CrossRefGoogle Scholar
  38. 38.
    Raja, K.S., Misra, M., Paramguru, K.: Formation of self-ordered nanotubular structure of anodic oxide layer on titanium. Electrochim. Acta. 51, 154–165 (2005)CrossRefGoogle Scholar
  39. 39.
    Sarraf, M., Zalnezhad, E., Bushroa, A.R., Hamouda, A.M.S., Baradaran, S., Nasiri-Tabrizi, B., Rafieerad, A.R.: Structural and mechanical characterization of Al/Al2O3 nanotube thin film on TiV alloy. Appl. Surf. Sci. 321, 511–519 (2014)CrossRefGoogle Scholar
  40. 40.
    Baradaran, S., Basirun, W.J., Zalnezhad, E., Hamdi, M., Sarhan, A.A., Alias, Y.: Fabrication and deformation behaviour of multilayer Al2O3/Ti/TiO2 nanotube arrays. J. Mech. Behav. Biomed. Mater. 20, 272–282 (2013)CrossRefGoogle Scholar
  41. 41.
    Lockman, Z., Sreekantan, S., Ismail, S., Schmidt-Mende, L., Macmanus-Driscoll, J.L.: Influence of anodisation voltage on the dimension of titania nanotubes. J. Alloy Compd. 503, 359–364 (2010)CrossRefGoogle Scholar
  42. 42.
    Mohamed, A.E.R., Rohani, S.: Modified TiO2 nanotube arrays (TNTAs): progressive strategies towards visible light responsive photoanode, a review. Energy Environ. Sci. 4, 1065–1086 (2011)CrossRefGoogle Scholar
  43. 43.
    Mohan, L., Anandan, C., Rajendran, V.: Electrochemical behaviour and bioactivity of self-organized TiO2 nanotube arrays on Ti–6Al–4V in Hanks’ solution for biomedical applications. Electrochim. Acta. 155, 411–420 (2015)CrossRefGoogle Scholar
  44. 44.
    Cheong, Y.L., Yam, F.K., Ooi, Y.W., Hassan, Z.: Room-temperature synthesis of nanocrystalline titanium dioxide via electrochemical anodization. Mat. Sci. Semicon. Proc. 26, 130–136 (2014)CrossRefGoogle Scholar
  45. 45.
    Assumpção, M.H.M.T., Moraes, A., De Souza, R.F.B., Reis, R.M., Rocha, R.S., Gaubeur, I., Calegaro, M.L., Hammer, P., Lanza, M.R.V., Santos, M.C.: Degradation of dipyrone via advanced oxidation processes using a cerium nanostructured electrocatalyst material. Appl. Catal. A. 462– 463, 256–261 (2013)CrossRefGoogle Scholar
  46. 46.
    Zhang, M., Jin, Z., Zhang, J., Guo, X., Yang, J., Li, W., Wang, X., Zhang, Z.: Effect of annealing temperature on morphology, structure and photocatalytic behavior of nanotubed H2Ti2O4(OH)2. J. Mol. Catal. A Chem. 8, 203–210 (2004)CrossRefGoogle Scholar
  47. 47.
    Feng, C., Wang, Y., Zhang, J., Yu, L., Li, D., Yang, J., Zhang, Z.: The effect of infrared light on visible light photocatalytic activity: an intensive contrast between Pt-doped TiO2 and N-doped TiO2. Appl. Catal. B Environ. 8, 61–71 (2012)CrossRefGoogle Scholar
  48. 48.
    Wang, Y., Jing, M., Zhang, M., Yang, J.: Facile synthesis and photocatalytic activity of platinum decorated TiO2−xNx: perspective to oxygen vacancies and chemical state of dopants. Catal. Commun. 8, 46–50 (2012)CrossRefGoogle Scholar
  49. 49.
    Fittipaldi, M., Gombac, V., Gasparotto, A., Deiana, C., Adami, G., Barreca, D., Montini, T., Martra, G., Gatteschi, D., Fornasiero, P.: Synergistic role of B and F dopants in promoting the photocatalytic activity of rutile TiO2. ChemPhysChem. 12, 2221–2224 (2011)CrossRefGoogle Scholar
  50. 50.
    Sarraf, M., Zalnezhad, E., Bushroa, A.R., Hamouda, A.M.S., Rafieerad, A.R., Nasiri-Tabrizi, B.: Effect of microstructural evolution on wettability and tribological behavior of TiO2 nanotubular arrays coated on Ti–6Al–4V. Ceram. Int. 41, 7952–7962 (2015)CrossRefGoogle Scholar
  51. 51.
    Padmanabhan, S.C., Pillai, S.C., Colreavy, J., Balakrishnan, S., McCormack, D.E., Perova, T.S., Gun’ko, Y., Hinder, S.J., Kelly, J.M.: A simple sol-gel processing for the development of high-temperature stable photoactive anatase titania. Chem. Mater. 19, 4474–4481 (2007)CrossRefGoogle Scholar
  52. 52.
    Choi, H.C., Jung, Y.M., Kim, S.B.: Size effects in the Raman spectra of TiO2 nanoparticles. Vib. Spectrosc. 37, 33–38 (2005)CrossRefGoogle Scholar
  53. 53.
    Kang, S.H., Kim, J.Y., Kim, H.S., Sung, Y.E.: Formation and mechanistic study of self-ordered TiO2 nanotubes on Ti substrate. J. Ind. Eng. Chem. 14, 52–59 (2008)CrossRefGoogle Scholar
  54. 54.
    Yu, W.Q., Qiu, J., Xu, L., Zhang, F.Q.: Corrosion behaviors of TiO2 nanotube layers on titanium in Hank’s solution. Biomed. Mater. 4, 065012 (2009)CrossRefGoogle Scholar
  55. 55.
    Li, J., He, X., Hang, R., Huang, X., Zhang, X., Tang, B.: Fabrication and corrosion behavior of TiO2 nanotubes on AZ91D magnesium alloy. Ceram. Int. 43, 13683–13688 (2017)CrossRefGoogle Scholar
  56. 56.
    Saji, V.S., Choe, H.C., Brantley, W.A.: An electrochemical study on self-ordered nanoporous and nanotubular oxide on Ti-35Nb-5Ta-7Zr alloy for biomedical applications. Acta Biomater. 5, 2303–2310 (2009)CrossRefGoogle Scholar
  57. 57.
    Shirazi, F.S., Moghaddam, E., Mehrali, M., Oshkour, A., Metselaar, H., Kadri, N., Zandi, K., Abu, N.: In vitro characterization and mechanical properties of β-calcium silicate/POC composite as a bone fixation device. J. Biomed. Mater. Res. Part A. 102, 3973–3985 (2014)CrossRefGoogle Scholar
  58. 58.
    Li, M.O., Xiao, X., Liu, R.: Synthesis and bioactivity of highly ordered TiO2 nanotube arrays. Appl. Surf. Sci. 255, 365–367 (2008)CrossRefGoogle Scholar
  59. 59.
    Ma, Q., Li, M., Hu, Z., Chen, Q., Hu, W.: Enhancement of the bioactivity of titanium oxide nanotubes by precalcification. Mater. Lett. 62, 3035–3038 (2008)CrossRefGoogle Scholar
  60. 60.
    Nasiri-Tabrizi, B., Zalnezhad, E., Hamouda, A.M.S., Basirun, W.J., Pingguan-Murphy, B., Fahami, A., Sarraf, M., Rafieerad, A.R.: Gradual mechanochemical reaction to produce carbonate doped fluorapatite–titania composite nanopowder. Ceram. Int. 40, 15623–15631 (2014)CrossRefGoogle Scholar

Copyright information

© Australian Ceramic Society 2018

Authors and Affiliations

  1. 1.Centre of Advanced Manufacturing and Material Processing, Department of Mechanical Engineering, Faculty of EngineeringUniversity of MalayaKuala LumpurMalaysia
  2. 2.Centre of Advanced Materials, Department of Mechanical Engineering, Faculty of EngineeringUniversity of MalayaKuala LumpurMalaysia
  3. 3.New Technologies Research CenterAmirkabir University of TechnologyTehranIran
  4. 4.School of Medicine, Faculty of Health and Medical SciencesTaylor’s UniversitySubang JayaMalaysia
  5. 5.Department of Materials Science and EngineeringSharif University of TechnologyTehranIran
  6. 6.Department of Restorative Dentistry, Faculty of DentistryUniversity of MalayaKuala LumpurMalaysia
  7. 7.Department of Chemistry, Faculty of ScienceUniversity of MalayaKuala LumpurMalaysia

Personalised recommendations