Journal of the Australian Ceramic Society

, Volume 55, Issue 1, pp 179–185 | Cite as

Enhanced luminescence by tunable coupling of Eu3+ and Tb3+ in ZnAl2O4:Eu3+:Tb3+ phosphor synthesized by solution combustion method

  • Naveen VermaEmail author
  • Bernabe Marí
  • Krishan Chander Singh
  • Jitender Jindal
  • Suprabha Yadav
  • Anuj Mittal


ZnAl2O4:Eu3+ or Tb3+ (1 mol%) and ZnAl2O4:Eu3+/Tb3+ with varied concentrations of Eu3+ and Tb3+ were prepared by solution combustion method. The photoluminescence spectra of synthesized compounds shows that simultaneous doping of Tb3+ and Eu3+ causes enhancement in Eu3+ luminescence intensity. This indicates some energy transfer from Tb3+ to Eu3+. This phenomenon of Tb3+ → Eu3+ energy transfer, accomplishing enhanced intensity of Eu3+ ions, is attributed to the cross relaxation phenomenon, which is favored by overlap between the donor and acceptor transition. The energy is transferred to Eu3+ cascade rapidly via non-radiative transitions to 5D0 state. The synthesized compounds were characterized by XRD, SEM for their structural and morphological characteristics respectively.


Aluminate Combustion method Cross relaxation Photoluminescence 



This work was supported by the European Commission through NanoCIS project (FP7-PEOPLE-2010-IRSES ref. 269279).


  1. 1.
    Lv, C., Di, W., Liu, Z., Zheng, K., Qin, W.: Synthesis of porous upconverting luminescence α-NaYF4: Ln3+ microspheres and their potential applications as carriers. Dalton Trans. 43, 3681–3690 (2014)CrossRefGoogle Scholar
  2. 2.
    Xu, D., Zhang, Y., Zhang, D., Yang, S.: Structural, luminescence and magnetic properties of Yb3+-Er3+ codoped Gd2O3 hierarchical architectures. Cryst. Eng. Comm. 17, 1106–1114 (2015)CrossRefGoogle Scholar
  3. 3.
    Yang, W., Li, X., Chi, D., Zhang, H., Liu, X.: Lanthanide-doped upconversion materials: emerging applications for photovoltaics and photocatalysis. Nanotechnology. 24, 482001–482016 (2014)CrossRefGoogle Scholar
  4. 4.
    Mutelet, B., Boudin, S., Pérez, O., Rueff, J.M., Labbé, C., Jaff, P.A.: La1−xLnxH(O3PCH3)2 (Ln = Tb, Eu; 0 < x ≤ 1): an organic–inorganic hybrid with lanthanide chains and tunable luminescence properties. Dalton Trans. 44, 1186–1192 (2015)CrossRefGoogle Scholar
  5. 5.
    Chen, F., Chen, M., Yang, C., Liu, J., Luo, N., Yang, G., Chen, D., Li, L.: Terbium-doped gadolinium oxide nanoparticles prepared by laser ablation in liquid for use as a fluorescence and magnetic resonance imaging dual-modal contrast agent. Phys. Chem. Chem. Phys. 17, 1189–1196 (2015)CrossRefGoogle Scholar
  6. 6.
    Hemmer, E., Quintanilla, M., Legare, F., Vetrone, F.: Temperature-induced energy transfer in dye-conjugated upconverting nanoparticles: a new candidate for nanothermometry. Chem. Mater. 27, 235–244 (2015)CrossRefGoogle Scholar
  7. 7.
    Zhang, D., Wang, C., Liu, Y., Shi, Q., Wang, W., Zhai, Y.: Green and red photoluminescence from ZnAl2O4: Mn phosphors prepared by sol–gel method. J. Lumin. 132, 1529–1531 (2012)CrossRefGoogle Scholar
  8. 8.
    Motloung, S.V., Dejene, F.B., Swart, H.C., Ntwaeaborwa, O.M.: Effects of Zn/citric acid mole fraction on the structure and luminescence properties of the un-doped and 1.5% Pb2+ doped ZnAl2O4 powders synthesized by citrate sol–gel method. J. Lumin. 163, 8–15 (2015)CrossRefGoogle Scholar
  9. 9.
    Ravikumar, B.S., Nagabhushana, H., Sunitha, D.V., Sharma, S.C., Nagabhushana, B.M., Shivakumara, C.: Plant latex mediated green synthesis of ZnAl2O4:Dy3+ (1–9 mol%) nanophosphor for white light generation. J. Alloys Compd. 585, 561–571 (2014)CrossRefGoogle Scholar
  10. 10.
    Kaminska, I., Fronc, K., Sikora, B., Koper, K., Minikayev, R., Paszkowica, W., Sobczak, K., Wojciechowski, T., Chwastyk, M., Sobczak, K., Wojciechowski, T., Chwastyk, M., Reszka, A., Kowalski, B.J., Stepien, P., Elbau, D.: Synthesis of ZnAl2O4: (Er3+,Yb3+) spinel-type nanocrystalline upconverting luminescent marker in HeLa carcinoma cells, using a combustion aerosol method route. RSC Adv. 4, 56596–56604 (2014)CrossRefGoogle Scholar
  11. 11.
    Araújo, P.M.A.G., Santos, P.T.A., Santos, P.T.A., Silva, F.N., Costa, A.C.F.M., Araújo, E.M. Obtaining of chitosan/ZnAl1.9Eu0.05O4 film for application as biomaterial, Mater. Sci. Forum, 805, 65–70, (2015)Google Scholar
  12. 12.
    Hill, R.J., Craig, J.R., Gibbs, G.V.: Systematics of the spinel structure type. Phys. Chem. Miner. 4, 317–339 (1979)CrossRefGoogle Scholar
  13. 13.
    Kashii, N., Maekawa, H., Hina, Y.: Dynamics of the cation mixing of MgAl2O4 and ZnAl2O4 spinel. J. Am. Ceram. Soc. 82, 1844–1848 (1999)CrossRefGoogle Scholar
  14. 14.
    Costa, A.C.F.M., Kiminami, R.H.G.A., Santos, P.T.A., Silva, J.F.: ZnAl2O4 co-doped with Yb3+/Er3+ prepared by combustion reaction: evaluation of photophysical properties. J. Mater. Sci. 48, 172–177 (2013)CrossRefGoogle Scholar
  15. 15.
    Cornu, L., Gaudon, M., Jubera, V.: ZnAl2O4 as a potential sensor: variation of luminescence with thermal history. J. Mater. Chem. C. 1, 5419–5428 (2013)CrossRefGoogle Scholar
  16. 16.
    Bunzli, J.-C.G., Piguet, C.: Taking advantage of luminescent lanthanide ions. Chem. Soc. Rev. 34, 1048–1077 (2005)CrossRefGoogle Scholar
  17. 17.
    Lou, Z., Hao, J.: Cathodoluminescence of rare-earth-doped zinc aluminate films. Thin Solid Films. 450, 334–340 (2004)CrossRefGoogle Scholar
  18. 18.
    Yang, C.-C., Chen, S.-Y., Cheng, S.-Y.: Synthesis and physical characteristics of ZnAl2O4 nanocrystalline and ZnAl2O4/Eu core-shell structure via hydrothermal route. Powder Technol. 148, 3–6 (2004)CrossRefGoogle Scholar
  19. 19.
    Martinez-Sanchez, E., Garcia-Hipolito, M., Guzman, J., Ramos-Brito, F., Santoyo-Salazar, J., Martinez-Martinez, R., Alvarez-Fregoso, O., Ramos-Cortes, M.I., Mendez-Delgado, J.J., Falcony, C.: Cathodoluminescent characteristics of Sm-doped ZnAl2O4 nanostructured powders. Phys. Stat. Solidi (a). 202, 102–107 (2005)CrossRefGoogle Scholar
  20. 20.
    Garcıa-Hipolito, M., Guzma’n-Mendoza, J., Martı’nez, E., Alvarez-Fregoso, O., Falcony, C.: Growth and cathodoluminescent characteristics of blue emitting cerium-doped zinc aluminate layers synthesized by spray pyrolysis technique. Phys. Stat. Solidi (a). 201, 1510–1517 (2004)CrossRefGoogle Scholar
  21. 21.
    Wang, S.F., Gu, F., Lu, M.K., Cheng, X.F., Zou, W.G., Zhou, G.J., Wang, S.M., Zhou, Y.Y.: Synthesis and photoluminescence characteristics of Dy3+-doped ZnAl2O4 nanocrystals via a combustion process. J. Alloys Compd. 394, 255–258 (2005)CrossRefGoogle Scholar
  22. 22.
    Heffern, M.C., Matosziuk, L.M., Meade, T.J.: Lanthanide probes for bioresponsive imaging. Chem. Rev. 114, 4496–4539 (2014)CrossRefGoogle Scholar
  23. 23.
    Tshabalala, K.G., Cho, S.H., Park, J.K., Pitale, S.S., Nagpure, I.M., Kroon, R.E., Swart, H.C., Ntwaeaborwa, O.M.: Luminescence properties of Ce3+ and Tb3+ co-activated ZnAl2O4 phosphor. Phys. B Condens. Matter. 407, 1489–1492 (2012)CrossRefGoogle Scholar
  24. 24.
    Barros, B.S., Melo, P.S., Kiminami, R.H.G.A., Costa, A.C.F.M., De Sá, G.F., Alves, S.: Photophysical properties of Eu3+ and Tb3+−doped ZnAl2O4 phosphors obtained by combustion reaction. J. Mater. Sci. 41, 4744–4748 (2006)CrossRefGoogle Scholar
  25. 25.
    Satapathy, K.K., Mishra, G.C., Khan, F.: ZnAl2O4: Eu novel phosphor: SEM and mechanoluminescence characterization synthesized by solution combustion technique. Luminescence. 30, 564–567 (2015)CrossRefGoogle Scholar
  26. 26.
    Rusu, E., Ursaki, V., Novitschi, G., Vasile, M., Petrenco, P., Kulyuk, L.: Luminescence properties of ZnGa2O4 and ZnAl2O4 spinels doped with Eu3+ and Tb3+ ions. Phys. Stat. Solidi C. 6, 1199–1202 (2009)CrossRefGoogle Scholar
  27. 27.
    Mindru, I., Marinescu, G., Gingasu, D., Patron, L., Diamandescu, L., Ghica, C., Mironov, B.: Doped aluminium based spinels synthesized by a soft chemistry method. Mater. Sci. Eng. B. 170, 99–106 (2010)CrossRefGoogle Scholar
  28. 28.
    Peng, C., Li, G., Geng, D., Shang, M., Hou, Z., & Lin, J. Fabrication and luminescence properties of one-dimensional ZnAl2O4 and ZnAl2O4: A3+ (A = Cr, Eu, Tb) microfibers by electrospinning method, Mater. Res. Bull., 47, 3592–3599 (2012)Google Scholar
  29. 29.
    Valenzuela, M.A., Bosch, P., Aguilar-rios, G., Montoya, A., Schifter, I.J.: Comparison between sol-gel, coprecipitation and wet mixing synthesis of ZnAl2O4, Sol–Gel. Sci. Technol. 8, 107–110 (1997)Google Scholar
  30. 30.
    Hong, W.S., De Jonghe, L.C., Yang, X., Rahaman, M.N.: Reaction sintering of ZnO-Al2O3. J. Am. Ceram. Soc. 78, 3217–3224 (1995)CrossRefGoogle Scholar
  31. 31.
    Kingsley, J.J., Suresh, K., Patil, K.C.: Combustion synthesis of fine-particle metal aluminates. J. Mater. Sci. 25, 1305–1312 (1990)CrossRefGoogle Scholar
  32. 32.
    Marí, B., Singh, K.C., Verma, N., Jindal, J.: Optical properties of Yb-doped ZnO/MgO nanocomposites. Ceram. Int. 42, 13018–13023 (2016)CrossRefGoogle Scholar
  33. 33.
    Li, Z., Zhang, S., Lee, W.E.: Molten salt synthesis of zinc aluminate powder. J. Eur. Ceram. Soc. 27, 3407–3412 (2007)CrossRefGoogle Scholar
  34. 34.
    Zawadzki, M.: Synthesis of nanosized and microporous zinc aluminate spinel by microwave assisted hydrothermal method (microwave–hydrothermal synthesis of ZnAl2O4). Solid State Sci. 8, 14–18 (2006)CrossRefGoogle Scholar
  35. 35.
    Dhak, D., Pramanik, P.: Particle size comparison of soft-chemically prepared transition metal (Co, Ni, Cu, Zn) aluminate spinels. J. Am. Ceram. Soc. 89, 1014–1021 (2006)CrossRefGoogle Scholar
  36. 36.
    Chen, L., Sun, X., Liu, Y., Zhou, K., Li, Y.: Porous ZnAl2O4 synthesized by a modified citrate technique. J. Alloys Compd. 376, 257–261 (2004)CrossRefGoogle Scholar
  37. 37.
    Dabre, K.V., Dhoble, S.J.: Synthesis and assessment of photoluminescent properties of Ca4−2xAl6WO16: REx,Nax (RE = Eu3+, Dy3+ and Sm3+) phosphors. RSC Adv. 5, 60409–60418 (2015)CrossRefGoogle Scholar
  38. 38.
    Krishna, R.H., Nagabhushana, B.M., Nagabhushana, H., Chakradhar, R.P.S., Suriyamurthy, N., Sivaramakrishna, R., Shivakumara, C., Rao, J.L., Thomas, T.: Combustion synthesis approach for spectral tuning of Eu doped CaAl2O4 phosphors. J. Alloys Compd. 589, 596–603 (2014)CrossRefGoogle Scholar
  39. 39.
    Marí, B., Singh, K.C., Verma, N., Mollar, M., Jindal, J.: Luminescence properties of the Eu2+/Eu3+ activated barium aluminate phosphors with Gd3+ concentration variation. Trans. Ind. Ceram. Soc. 74, 157–161 (2015)CrossRefGoogle Scholar
  40. 40.
    Sun, F., Zhao, J.: Blue-green BaAl2O4: Eu2+,Dy3+ phosphors synthesized via combustion synthesis method assisted by microwave irradiation. J. Rare Earths. 29, 326–329 (2011)CrossRefGoogle Scholar
  41. 41.
    Ragupathi, C., Kennedy, L.J., Vijaya, J.: A new approach: synthesis, characterization and optical studies of nano-zinc aluminate. Adv. Powder Technol. 25, 267–273 (2014)CrossRefGoogle Scholar
  42. 42.
    Singh, V., Chakradhar, R.P.S., Rao, J.L., Kim, D.K.: Characterization, EPR and luminescence studies of ZnAl2O4: Mn phosphors. J. Lumin. 128, 394–402 (2008)CrossRefGoogle Scholar
  43. 43.
    Wang, S., Zhao, X., Zhou, S., Zhou, L., Xia, G.: Enhanced luminescent properties of solution combustion synthesized nanocrystalline Y3Al5O12: Eu3+ phosphors. Curr. Nanosci. 9, 183–186 (2013)CrossRefGoogle Scholar
  44. 44.
    Som, S., Sharma, S.K.: Eu3+/Tb3+−codoped Y2O3 nanophosphors: rietveld refinement, bandgap and photoluminescence optimization. J. Phys. D: Appl. Phys. 45, 415102 (2012)CrossRefGoogle Scholar
  45. 45.
    Zhao, C.J., Cai, J.L., Li, R.Y., Tie, S.L., Wan, X., Shen, J.Y.: White light emission from Eu3+/Tb3+/Tm3+ triply-doped aluminoborate glass excited by UV light. J. Non-Cryst. Solids. 358, 604–608 (2012)CrossRefGoogle Scholar
  46. 46.
    Xu, M., Wang, L., Jia, D., Zhao, H.: Tuning the color emission of Sr2P2O7: Tb3+, Eu3+ phosphors based on energy transfer. J. Am. Ceram. Soc. 98, 1536–1541 (2015)CrossRefGoogle Scholar
  47. 47.
    Tu, D., Liang, Y., Liu, R., Li, D.: Eu/Tb ions co-doped white light luminescence Y2O3 phosphors. J. Lumin. 131, 2569–2573 (2011)CrossRefGoogle Scholar

Copyright information

© Australian Ceramic Society 2018

Authors and Affiliations

  • Naveen Verma
    • 1
    Email author
  • Bernabe Marí
    • 2
  • Krishan Chander Singh
    • 1
  • Jitender Jindal
    • 1
  • Suprabha Yadav
    • 1
  • Anuj Mittal
    • 1
  1. 1.Department of ChemistryMaharshi Dayanand UniversityRohtakIndia
  2. 2.Institut de Disseny per la Fabricació Automatitzada - Departament de Física AplicadaUniversitat Politècnica de ValènciaValènciaSpain

Personalised recommendations