Advertisement

Journal of the Australian Ceramic Society

, Volume 55, Issue 1, pp 169–177 | Cite as

Green gelcasting of aluminum nitride using environmental sustainable ovalbumin natural binder

  • W. H. KokEmail author
  • Winco K. C. Yung
  • Desmond T. C. Ang
Research
  • 31 Downloads

Abstract

Ceramic powder casting technique using ovalbumin, i.e., egg protein, as natural amino-based binder. The study has shown successful gelcasting of high-performance 3D thermal conductivity aluminum nitride (AlN) for application in the 3D integrated circuits (3D-IC). The green body has a good flexural strength of 3 MPa, which is sufficiently be trimmed with computerized numerical controlled (CNC) machining prior to the pyrolysis manufacturing processes, i.e., sintering technologies. Different particle sizes of AlN powder was being investigated and the results indicated bimodal particle size ratio of 1.5 to 2 attributed the most favorable combination in this study. Doped of rare earth element, yttrium oxide (Y2O3) nano particle size, has shown an improvement in overall thermal conductivity of 3D sintered objects. SEM images also well demonstrated higher thermal conductivity value are linked with a compact structure of higher density of 3D ceramic objects.

Keywords

AlN Aluminum nitride Ovalbumin Gelcasting Green casting 

Notes

Acknowledgements

The authors are very grateful to Prof. Y.H. Wang and PhD Candidate Mr. Yong Wen from the Department of Civil and Environmental Engineering, the Hong Kong Polytechnic University, that supported the rheology measurement; Prof. Thomas M.H. Lee and PhD Candidate Ms. Qijin He from the Department of Biomedical Engineering, the Hong Kong Polytechnic University, that supported the particle size measurement used in this research study.

Funding information

The author would like to thank the Hong Kong Polytechnic University (student account code RUV-3), the Hong Kong Research Grant Council (Hong Kong PhD Fellowship Scheme, Ref No. PF14-11496), the PolyU Micro Fund, and the Electro Precision Technology Sdn Bhd for providing financial support that allows for the related research work in this paper.

References

  1. 1.
    Schwartz, B.: Conference studies next generation of electronic packaging. Ceramic Bulletin. 65(7), (1986)Google Scholar
  2. 2.
    Cannon, W., Morris, J., Mikeska, K., Blum, J., Cannon, W.: Multilayer ceramic devices, advances in ceramics. In. The Am. Ceram. Soc. Inc. OH, (1986)Google Scholar
  3. 3.
    Blum, J.B., Cannon, W.R.: Multilayer ceramic devices, vol. 19 American Ceramic Society, (1986)Google Scholar
  4. 4.
    Tritt, T.M.: Thermal conductivity: theory, properties, and applications. Springer Science & Business Media, Berlin (2005)Google Scholar
  5. 5.
    Chen, C.-F., Perisse, M., Ramirez, A., Padture, N., Chan, H.: Effect of grain boundary phase on the thermal conductivity of aluminium nitride ceramics. J Mater Sci. 29(6), 1595–1600 (1994)CrossRefGoogle Scholar
  6. 6.
    Watari, K., Hwang, H.J., Toriyama, M., Kanzaki, S.: Low-temperature sintering and high thermal conductivity of YLiO2-doped AlN ceramics. J Am Ceram Soc. 79(7), 1979–1981 (1996)CrossRefGoogle Scholar
  7. 7.
    Fanelli, A.J., Silvers, R.D., Frei, W.S., Burlew, J.V., Marsh, G.B.: New aqueous injection molding process for ceramic powders. J Am Ceram Soc. 72(10), 1833–1836 (1989)CrossRefGoogle Scholar
  8. 8.
    Yuping, Z., Dongliang, J., Greil, P.: Tape casting of aqueous Al 2 O 3 slurries. J Eur Ceram Soc. 20(11), 1691–1697 (2000)CrossRefGoogle Scholar
  9. 9.
    Omatete, O.O., Janney, M.A., Strehlow, R.A.: Gelcasting: a new ceramic forming process. Am Ceram Soc Bull. 70(10), 1641–1649 (1991)Google Scholar
  10. 10.
    Janney, M.A., Omatete, O.O., Walls, C.A., Nunn, S.D., Ogle, R.J., Westmoreland, G.: Development of low-toxicity gelcasting systems. J Am Ceram Soc. 81(3), 581–591 (1998)CrossRefGoogle Scholar
  11. 11.
    Millán, A.J., Moreno, R., Nieto, M.A.I.: Thermogelling polysaccharides for aqueous gelcasting—part I: a comparative study of gelling additives. J Eur Ceram Soc. 22(13), 2209–2215 (2002)CrossRefGoogle Scholar
  12. 12.
    Dhara, S., Bhargava, P.: Egg white as an environmentally friendly low-cost binder for gelcasting of ceramics. J Am Ceram Soc. 84(12), 3048–3050 (2001)CrossRefGoogle Scholar
  13. 13.
    Adolfsson, E.: Gelcasting of zirconia using agarose. J Am Ceram Soc. 89(6), 1897–1902 (2006)CrossRefGoogle Scholar
  14. 14.
    Lyckfeldt, O., Brandt, J., Lesca, S.: Protein forming—a novel shaping technique for ceramics. J Eur Ceram Soc. 20(14), 2551–2559 (2000)CrossRefGoogle Scholar
  15. 15.
    He, X., Su, B., Zhou, X., Yang, J., Zhao, B., Wang, X., Yang, G., Tang, Z., Qiu, H.: Gelcasting of alumina ceramic using an egg white protein binder system. Ceram Silik. 55(1), 1–7 (2011)Google Scholar
  16. 16.
    Mine, Y.: Recent advances in the understanding of egg white protein functionality. Trends Food Sci Technol. 6(7), 225–232 (1995)CrossRefGoogle Scholar
  17. 17.
    Jian, G., Tai, Q., Jian, Y., Yongbao, F., Chao, Z., Wenpeng, Z., Tianhao, G.: Process dependant setting behavior of aqueous gelcast AlN slurries. Ceram Int. 38(4), 2905–2911 (2012).  https://doi.org/10.1016/j.ceramint.2011.11.066 CrossRefGoogle Scholar
  18. 18.
    Jianfeng, X., Manjiang, D., Jun, L., Guohong, Z., Shiwei, W.: Gelcasting of aluminum nitride ceramics. J Am Ceram Soc. 93(4), 928–930 (2010).  https://doi.org/10.1111/j.1551-2916.2009.03489.x CrossRefGoogle Scholar
  19. 19.
    Shen, L., Xu, X., Lu, W., Shi, B.: Aluminum nitride shaping by non-aqueous gelcasting of low-viscosity and high solid-loading slurry. Ceram Int. (2016).  https://doi.org/10.1016/j.ceramint.2015.12.036
  20. 20.
    W.H.Kok, W.K.C.Y., Desmond T.C.Ang: Characteristic of AlN green parts by gelcasting with egg-protein. In: ICONTES, 2nd International Congress on Technology - Engineering & Science, Kuala Lumpur, Malaysia, 28–29 July, 2016 2016, p. 168, Malaysia (2016)Google Scholar
  21. 21.
    Hsieh, C.Y., Chung, S.L.: High thermal conductivity epoxy molding compound filled with a combustion synthesized AlN powder. J Appl Polym Sci. 102(5), 4734–4740 (2006)CrossRefGoogle Scholar
  22. 22.
    Weidenfeller, B., Höfer, M., Schilling, F.R.: Thermal conductivity, thermal diffusivity, and specific heat capacity of particle filled polypropylene. Compos A: Appl Sci Manuf. 35(4), 423–429 (2004)CrossRefGoogle Scholar
  23. 23.
    Wong, C., Bollampally, R.S.: Thermal conductivity, elastic modulus, and coefficient of thermal expansion of polymer composites filled with ceramic particles for electronic packaging. J Appl Polym Sci. 74(14), 3396–3403 (1999)CrossRefGoogle Scholar
  24. 24.
    Nagai, Y., Lai, G.-C.: Thermal conductivity of epoxy resin filled with particulate aluminum nitride powder. Nippon seramikkusu kyokai gakujutsu ronbunshi. 105(3), 197–200 (1997)CrossRefGoogle Scholar
  25. 25.
    Yung, K., Zhu, B., Wu, J., Yue, T., Xie, C.: Effect of AlN content on the performance of brominated epoxy resin for printed circuit board substrate. J Polym Sci B Polym Phys. 45(13), 1662–1674 (2007)CrossRefGoogle Scholar
  26. 26.
    Li, S., Qi, S., Liu, N., Cao, P.: Study on thermal conductive BN/novolac resin composites. Thermochim Acta. 523(1), 111–115 (2011)CrossRefGoogle Scholar
  27. 27.
    Fletcher, J., Hill, A.: Making the connection-particle size, size distribution and rheology. Chemie. DE Information Service, Retrieved October 11 (2007)Google Scholar
  28. 28.
    Bagheri, S., Shameli, K., Abd Hamid, S.B.: Synthesis and characterization of anatase titanium dioxide nanoparticles using egg white solution via sol-gel method. J Chem. 2013, (2013).  https://doi.org/10.1155/2013/848205
  29. 29.
    Watari, K., Hwang, H.J., Toriyama, M., Kanzaki, S.: Effective sintering aids for low-temperature sintering of AlN ceramics. J Mater Res. 14(04), 1409–1417 (1999)CrossRefGoogle Scholar
  30. 30.
    Chernetskaya, M., Glotov, D., Popova, N., Sarkisyan, T., Kuznetsova, I.: Effect of yttrium compounds on sintering of aluminum nitride. Glas Ceram. 51(2), 78–80 (1994)CrossRefGoogle Scholar
  31. 31.
    Komeya, K., Inoue, H., Tsuge, A.: Effects of various additives on sintering of aluminum nitride. (1982)Google Scholar
  32. 32.
    Kuramoto, N., Taniguchi, H.: Transparent AIN ceramics. J Mater Sci Lett. 3(6), 471–474 (1984)CrossRefGoogle Scholar
  33. 33.
    Kang, S.-J.L.: 14 - Basis of liquid phase sintering. In: Sintering, pp. 199–203. Butterworth-Heinemann, Oxford (2005)Google Scholar
  34. 34.
    Zhang, Y., Binner, J.: Hydrolysis process of a surface treated aluminum nitride powder—a FTIR study. J Mater Sci Lett. 21(10), 803–805 (2002)CrossRefGoogle Scholar
  35. 35.
    Hong, J.-P., Yoon, S.-W., Hwang, T., Oh, J.-S., Hong, S.-C., Lee, Y., Nam, J.-D.: High thermal conductivity epoxy composites with bimodal distribution of aluminum nitride and boron nitride fillers. Thermochim Acta. 537, 70–75 (2012).  https://doi.org/10.1016/j.tca.2012.03.002 CrossRefGoogle Scholar
  36. 36.
    Shi, Y., Zhang, Y.: Simulation of random packing of spherical particles with different size distributions. Materials Science & Processing. 92(3), 621–626 (2008).  https://doi.org/10.1007/s00339-008-4547-6 Google Scholar
  37. 37.
    Taylor, K., Lenie, C.: Some properties of aluminum nitride. J Electrochem Soc. 107(4), 308–314 (1960)CrossRefGoogle Scholar
  38. 38.
    Morrow, C., Lockner, D.: Hayward fault rocks: porosity, density and strength measurements. US Department of the Interior, US Geological Survey, (2001)Google Scholar

Copyright information

© Australian Ceramic Society 2018

Authors and Affiliations

  1. 1.Department of Industrial and Systems EngineeringThe Hong Kong Polytechnic UniversityKowloonHong Kong
  2. 2.2 SPMS-CBCNanyang Technological UniversitySingaporeSingapore

Personalised recommendations