Journal of the Australian Ceramic Society

, Volume 55, Issue 1, pp 135–144 | Cite as

Influence of heating rate and mechanical activation on the reaction between kaolin and aluminium powder

  • Hocine BelhouchetEmail author
  • Toufik Sahraoui
  • Khaled Belhouchet
  • Maximina Romero


In this work, the effect of heating rate and mechanical activation on the reaction of kaolin and aluminium powder was investigated. A batch comprised of 89.5 wt% kaolin and 10.5 wt% aluminium powders was mixed and milled in a planetary ball-mill for 1, 5, 10, 20 and 40 h. The mixture powders were heat treated with a heating rate of 5, 10, 15, 20, 30 and 40 °C/min, respectively. After milling for 20 and 40 h, the results showed the formation of free silicon, quartz and nacrite (Al2Si2(OH)4) at room temperature. The kaolinite dehydroxylation, aluminium oxidation and the θ- to α-Al2O3 transformations are highly affected by heating rate and mechanical activation. As compared with the smallest heating rate, the mixtures heated with faster heating rate show the disappearance of the peak corresponding to the oxidation of aluminium and the appearance of a second peak corresponding to the formation of α-Al2O3. The intensity of the last peak increases with increasing of the heating rate and milled at lower milling time. The effects of heating rate in the reaction of kaolin and aluminium powder are attributed to the amorphization of kaolinite, the diffusion of Al3+ to form an amorphous alumina layer on the particle surface and the generation of microcracks at the particle surface of aluminium powder.


Heating rate Mechanical activation Kaolinite, aluminium oxidation Alumina transitions 



The authors would like to acknowledge Mrs. P. Díaz and Mrs. E. Sánchez for their technical assistance. K. Belhouchet wants to thank University Ferhat Abbas of Sétif 1 for providing financial support to carry out a scientific stay at the IETcc-CSIC.


  1. 1.
    Bai, J.: Fabrication and properties of porous mullite ceramics from calcined carbonaceous kaolin and α-Al2O3. Ceram. Int. 36(2), 673–678 (2010)CrossRefGoogle Scholar
  2. 2.
    Schneider, H., Schreuer, J., Hildmann, B.: Structure and properties of mullite—a review. J. Eur. Ceram. Soc. 28(2), 329–344 (2008)CrossRefGoogle Scholar
  3. 3.
    Singh, A.K., Sarkar, R.: Nano mullite bonded refractory castable composition for high temperature applications. Ceram. Int. 42(11), 12937–11294 (2016)CrossRefGoogle Scholar
  4. 4.
    Romero, M., Pérez, J.M.: Relation between the microstructure and technological properties of porcelain stoneware. A review. Mater. Constr. 65(320), e065 (2015)CrossRefGoogle Scholar
  5. 5.
    Wang, Z., Feng, P., Wang, X., Geng, P., Akhtar, F., Zhang, H.: Fabrication and properties of freeze-cast mullite foams derived from coal-series kaolin. Ceram. Int. 42(10), 12414–12421 (2016)CrossRefGoogle Scholar
  6. 6.
    Guo, H., Ye, F., Li, W., Song, X., Xie, G.: Preparation and characterization of foamed microporous mullite ceramics based on kyanite. Ceram. Int. 41(10), 14645–14651 (2015)CrossRefGoogle Scholar
  7. 7.
    Sousa, L.L., Souza, A.D.V., Fernandes, L., Arantes, V.L., Salomao, R.: Development of densification-resistant castable porous structures from in situ mullite. Ceram. Int. 41(8), 9443–9454 (2015)CrossRefGoogle Scholar
  8. 8.
    Ganesh, I., Ferreira, J.M.F.: Influence of raw material type and of the overall chemical composition on phase formation and sintered microstructure of mullite aggregates. Ceram. Int. 35(5), 2007–2015 (2009)CrossRefGoogle Scholar
  9. 9.
    Viswabaskaran, V., Gnanam, F.D., Balasubramanian, M.: Mullitization behaviour of calcined clay–alumina mixtures. Ceram. Int. 29(5), 561–571 (2003)CrossRefGoogle Scholar
  10. 10.
    Liu, Y.F., Liu, X.Q., Tao, S.W., Meng, G.Y., Sorensen, O.T.: Kinetics of the reactive sintering of kaolinite-aluminum hydroxide extrudate. Ceram. Int. 28(5), 479–486 (2002)CrossRefGoogle Scholar
  11. 11.
    Esharghawi, A., Penot, C., Nardou, F.: Contribution to porous mullite synthesis from clays by adding Al and Mg powders. J. Eur. Ceram. Soc. 29(1), 31–38 (2009)CrossRefGoogle Scholar
  12. 12.
    Chen, Y.F., Wang, M.C., Hon, M.H.: Transformation kinetics for mullite in kaolin-Al2O3 ceramics. J. Mater. Res. 18(6), 1355–1362 (2003)CrossRefGoogle Scholar
  13. 13.
    Sahnoune, F., Chegaar, M., Saheb, N., Goeuriot, P., Valdivieso, F.: Algerian kaolinite used for mullite formation. Appl. Clay Sci. 38(3–4), 304–310 (2008)CrossRefGoogle Scholar
  14. 14.
    Chen, Y.F., Chang, Y.H., Wang, M.C., Hon, M.H.: Effects of Al2O3 addition on the phases, flow characteristics and morphology of the porous kaolin ceramics. Mater. Sci. Eng. A. 373, 221–228 (2004)CrossRefGoogle Scholar
  15. 15.
    Tezuka, N., Low, I.M., Davies, I.J., Prior, M., Studer, A.: In situ neutron diffraction investigation on the phase transformation sequence of kaolinite and halloysite to mullite. Physica B. 385-386(1), 555–557 (2006)CrossRefGoogle Scholar
  16. 16.
    Vijayan, C., Soundararajan, N., Chandramohan, R., Ramaswamy, S., Gnanadurai, P.: The effect of heating rate on the phase transition and crystallization kinetics of Ag2Se0.2Te0.8 alloy. J. Therm. Anal. Calorim. 119(1), 91–97 (2015)CrossRefGoogle Scholar
  17. 17.
    Soifer, L., Korin, E.: Effect of heating rate on crystallization kinetics of amorphous Al91La5Ni4 alloys by DSC. J. Therm. Anal. Calorim. 56(1), 437–446 (1999)CrossRefGoogle Scholar
  18. 18.
    Katoh, K., Ito, S., Kawaguchi, S., Higashi, E., Nakano, K., Ogata, Y., Wada, Y.: Effect of heating rate on the thermal behavior of nitrocellulose. J. Therm. Anal. Calorim. 100(1), 303–308 (2010)CrossRefGoogle Scholar
  19. 19.
    Sahraoui, T., Belhouchet, H., Heraiz, M., Brihi, N., Guermat, A.: The effects of mechanical activation on the sintering of mullite produced from kaolin and aluminum powder. Ceram. Int. 42(10), 12185–12193 (2016)CrossRefGoogle Scholar
  20. 20.
    Welham, N.J., Berbenni, V., Chapman, P.G.: Increased chemisorption onto activated carbon after ball-milling. Carbon. 40(13), 2307–2315 (2002)CrossRefGoogle Scholar
  21. 21.
    Zyryanov, V.V.: Ultrafast mechanochemical synthesis of mixed oxides. Inorg. Mater. 41(4), 378–392 (2005)CrossRefGoogle Scholar
  22. 22.
    Tamborenea, S., Mazzoni, A.D., Aglietti, E.F.: Mechanochemical activation of minerals on the cordierite synthesis. Thermochim. Acta. 411(2), 219–224 (2004)CrossRefGoogle Scholar
  23. 23.
    Neto, J.B.R., Moreno, R.: Effect of mechanical activation on the rheology and casting performance of kaolin/talc/alumina suspensions for manufacturing dense cordierite bodies. Appl. Clay Sci. 38(3–4), 209–218 (2008)CrossRefGoogle Scholar
  24. 24.
    Boldyrev, V.V.: Mechanochemistry and mechanical activation of solids. Solid State Ionics. 63-65, 537–543 (1993)CrossRefGoogle Scholar
  25. 25.
    Chen, L., Ye, G., Xu, D., Zhu, L., Lu, Z., Dong, L., Liu, Y.: Chemical bond change of gibbsite and fumed silica mixture during mechanical activation. Mater. Lett. 85(15), 91–94 (2012)CrossRefGoogle Scholar
  26. 26.
    Behmanesh, N., Heshmati-Manesh, S., Ataie, A.: Role of mechanical activation of precursors in solid state processing of nano-structured mullite phase. J. Alloys Compd. 450(1–2), 421–425 (2008)CrossRefGoogle Scholar
  27. 27.
    Kong, L.B., Zhang, T.S., Ma, J., Boey, F.: Anisotropic grain growth of mullite in high-energy ball milled powders doped with transition metal oxides. J. Eur. Ceram. Soc. 23(13), 2247–2256 (2003)CrossRefGoogle Scholar
  28. 28.
    Aguilar-Santillan, J., Balmori-Ramirez, H., Bradt, R.C.: Dense mullite from attrition milled kyanite and α-alumina. J. Ceram. Process. Res. 8(1), 1–11 (2007)Google Scholar
  29. 29.
    Ebadzadeh, T.: Effect of mechanical activation and microwave heating on synthesis and sintering of nano-structured mullite. J. Alloys Compd. 489(1), 125–129 (2010)CrossRefGoogle Scholar
  30. 30.
    Razavi-Tousi, S.S., Nematollahi, G.A., Ebadzadeh, T., Szpunar, J.A.: Modifying aluminum-water reaction to generate nano-sized aluminium hydroxide particles beside hydrogen. Powder Technol. 241, 166–173 (2013)CrossRefGoogle Scholar
  31. 31.
    Belhouchet, H., Hamidouche, M., Bouaouadja, N., Garnier, V., Fantozzi, G.: Kinetics of mullite formation in zircon and boehmite mixture. Ann. Chimie Sci. Materiaux. 35(1), 17–25 (2010)CrossRefGoogle Scholar
  32. 32.
    Elmas, E., Yildiz, K., Toplan, N., Toplan, H.O.: The non-isothermal kinetics of mullite formation in mechanically activated kaolinite-alumina ceramic system. J. Therm. Anal. Calorim. 108(3), 1201–1206 (2012)CrossRefGoogle Scholar
  33. 33.
    Shahverdi-Shahraki, K., Ghosh, T., Mahajan, K., Ajji, A., Carreau, P.J.: Effect of dry grinding on chemically modified kaolin. Appl. Clay Sci. 105-106, 100–106 (2015)CrossRefGoogle Scholar
  34. 34.
    Dellisanti, F., Valdrè, G.: The role of microstrain on the thermostructural behaviour of industrial kaolin deformed by ball milling at low mechanical load. Int. J. Miner. Process. 102-103, 69–77 (2012)CrossRefGoogle Scholar
  35. 35.
    Chen, C.Y., Lan, G.S., Tuan, W.H.: Preparation of mullite by the reaction sintering of kaolinite and alumina. J. Eur. Ceram. Soc. 20(14–15), 2519–2525 (2000)CrossRefGoogle Scholar
  36. 36.
    Hasani, S., Panjepour, M., Shamania, M.: The oxidation mechanism of pure aluminum powder particles. Oxid. Met. 78(3–4), 179–195 (2012)CrossRefGoogle Scholar
  37. 37.
    Issaoui, M., Limousy, L., Lebeau, B., Bouaziz, J., Fourati, M.: Design and characterization of flat membrane supports elaborated from kaolin and aluminum powders. C. R. Chimie. 19(4), 496–504 (2016)CrossRefGoogle Scholar
  38. 38.
    Suvaci, E., Simkovich, G., Messing, G.: The reaction-bonded aluminium oxide process: I, the effect of attrition milling on the solid-state oxidation of aluminium powder. J. Am. Ceram. Soc. 83(2), 299–305 (2000)CrossRefGoogle Scholar
  39. 39.
    Bafrooei, H.B., Ebadzadeh, T., Majidian, H.: Microwave synthesis and sintering of forsterite nanopowder produced by high energy ball milling. Ceram. Int. 40(2), 2869–2876 (2014)CrossRefGoogle Scholar
  40. 40.
    Castelein, O., Soulestin, B., Bonnet, J.P., Blanchart, P.: The influence of heating rate on the thermal behaviour and mullite formation from a kaolin raw material. Ceram. Int. 27(5), 517–522 (2001)CrossRefGoogle Scholar
  41. 41.
    Chen, L., Song, W.L., Lv, J., Wang, L., Xie, C.S.: Effect of heating rates on TG-DTA results of aluminum nanopowders prepared by laser heating evaporation. J. Therm. Anal. Calorim. 96(1), 141–145 (2009)CrossRefGoogle Scholar
  42. 42.
    Levin, I., Brandon, D.: Metastable alumina polymorphs: crystal structures and transition sequences. J. Am. Ceram. Soc. 81(8), 1995–2012 (1998)CrossRefGoogle Scholar
  43. 43.
    Dynys, F.W., Halloran, J.W.: Alpha alumina formation in alum-derived gamma alumina. J. Am. Ceram. Soc. 65(9), 442–448 (1982)CrossRefGoogle Scholar
  44. 44.
    Bossert, J., Fidancevska, E.: Effect of mechanical activation on the sintering of transition nanoscaled alumina. Sci. Sinter. 39(2), 117–125 (2007)CrossRefGoogle Scholar
  45. 45.
    Chen, G., Qi, H., Xing, W., Xu, N.: Direct preparation of macroporous mullite supports for membranes by in situ reaction sintering. J. Membr. Sci. 318(1–2), 38–44 (2008)CrossRefGoogle Scholar
  46. 46.
    Sainz, M.A., Serrano, F.J., Amigo, J.M., Bastida, J., Caballero, A.: XRD microstructural analysis of mullites obtained from kaolinite-alumina mixtures. J. Eur. Ceram. Soc. 20(4), 403–412 (2000)CrossRefGoogle Scholar

Copyright information

© Australian Ceramic Society 2018

Authors and Affiliations

  • Hocine Belhouchet
    • 1
    • 2
    Email author
  • Toufik Sahraoui
    • 1
  • Khaled Belhouchet
    • 3
  • Maximina Romero
    • 4
  1. 1.Non Metallic Materials Laboratory, Institute of Optics and Precision MechanicsUniversity of Ferhat Abbas Sétif 1SétifAlgeria
  2. 2.Physics Department, Faculty of ScienceUniversity Mohamed Boudiaf-M’silaM’silaAlgeria
  3. 3.Laboratory of Electrical EngineeringUniversity of Ferhat Abbas Sétif 1SétifAlgeria
  4. 4.Group of Glass and Ceramic Materials Eduardo Torroja Institute for Construccion ScienceMadridSpain

Personalised recommendations