Journal of the Australian Ceramic Society

, Volume 55, Issue 1, pp 115–122 | Cite as

Effect of sintering temperatures on structural and optical properties of ZnO-Zn2SiO4 composite prepared by using amorphous SiO2 nanoparticles

  • Engku Abd Ghapur Engku Ali
  • Khamirul Amin MatoriEmail author
  • Elias Saion
  • Sidek Hj. Ab Aziz
  • Mohd Hafiz Mohd Zaid
  • Ibrahim Mustapha Alibe


The effect of different sintering temperatures on structural and optical properties of ZnO-Zn2SiO4 composite was investigated. In this study, a ZnO-Zn2SiO4 composite was prepared by encapsulated zinc nitrate hexahydrate with amorphous silica nanoparticles in deionized water. The amorphous silica nanoparticles were prepared by reacting sodium silicate with ethanol. Zinc nitrate was mixed with the obtained amorphous silica nanoparticles with the ratio of 2:1 and 1.25:1 for Zn:Si and subjected to the different sintering temperatures from 600 to 1000 °C. Field emission scanning electron microscope (FESEM) microstructure showed that samples exhibit spherical morphology up to 700 °C and dumbbell morphology above 800 °C sintering temperature. The formation of Zn2SiO4 crystal phase appears from 700 °C and onwards together with ZnO crystal phase. The gaining of sintering temperature has also raised the amount of Zn2SiO4 phase and band gap values of the ZnO-Zn2SiO4 composite.


ZnO nanoparticles SiO2 Zinc silicate Optical band gap Composites 


Funding information

This study was funded by the Malaysian Ministry of Higher Education (MOHE), Universiti Malaysia Terengganu and Universiti Putra Malaysia through the Inisiatif Putra Berkumpulan (IPB) research grant.


  1. 1.
    Ye, S., Xiao, F., Pan, Y.X., Ma, Y.Y., Zhang, Q.Y.: Phosphors in phosphor-converted white light-emitting diodes: recent advances in materials, techniques and properties. Mater Sci Eng R. 70, 1–34 (2010)CrossRefGoogle Scholar
  2. 2.
    Yen, W.M., Shionoya, S., Yamamoto, H.: Phosphors Handbooks. CRC Press, New York (2007)Google Scholar
  3. 3.
    Takesue, M., Hayashi, H., Smith, R.L.: Thermal and chemical methods for producing zinc silicate (willemite): a review. Prog Cryst Growth Charact Mater. 55, 98–124 (2009)CrossRefGoogle Scholar
  4. 4.
    Baccile, N., Babonneau, F., Thomas, B., Coradin, T.: Introducing ecodesign in silica sol-gel materials. J Mater Chem. 19(45), 8537–8559 (2009)CrossRefGoogle Scholar
  5. 5.
    Elimelech, H., Avnir, D.: Sodium-silicate route to submicrometer hybrid PEG@silica particles. Chem Mater. 20, 2224–2227 (2008)CrossRefGoogle Scholar
  6. 6.
    Wu, W., Cao, S., Yuan, X., Zhao, Z., Fang, L.: Sodium silicate route: fabricating high monodisperse hollow silica spheres by a facile method. J Porous Mater. 19, 913–919 (2012)CrossRefGoogle Scholar
  7. 7.
    Sundblom, A., Oliveira, C.L.P., Pedersen, J.S., Palmqvist, A.E.C.: Decoupling particle formation from intraparticle ordering in mesostructured silica colloids. Microporous Mesoporous Mater. 145(1–3), 59–64 (2011)CrossRefGoogle Scholar
  8. 8.
    Yun-yu, Z., Xiao-xuan, L., Zheng-xing, C.: Rapid synthesis of well-ordered mesoporous silica from sodium silicate. Powder Technol. 226, 239–245 (2012)CrossRefGoogle Scholar
  9. 9.
    Cheng, G., Liu, C.: Preparation of lamellar mesoporous silica microspheres via SDS templates. Mater Chem Phys. 77(2), 359–364 (2003)CrossRefGoogle Scholar
  10. 10.
    Buining, P., Liz-Marzan, L.M., Philipse, A.P.: A simple preparation of small, smooth silica spheres in a seed alcosol for stober synthesis. J Colloid Interface Sci. 179, 318–321 (1996)CrossRefGoogle Scholar
  11. 11.
    Godoi, R.H.M., Fernandes, L., Jafelicci Jr., M., Marques, R.C., Varanda, L.C., Davolos, M.R.: Investigation of the systems silica and silica containing chromium in alcohol medium. J. Non-Cryst Solids. 247, 141–145 (1999)CrossRefGoogle Scholar
  12. 12.
    Bahadur, H., Srivastava, A.K., Sharma, R.K., Chandra, S.: Morphologies of sol-gel derived thin films of ZnO using different precursor materials and their nanostructures. Nanoscale Res Lett. 2, 469–475 (2007)CrossRefGoogle Scholar
  13. 13.
    Singh, A.K., Viswanath, V., Janu, V.C.C.: Synthesis, effect of capping agents, structural, optical and photoluminescence properties of ZnO nanoparticles. J Lumin. 129, 874–878 (2009)CrossRefGoogle Scholar
  14. 14.
    Ramakrishna, P.V., Murthy, D.B.R.K., Sastry, D.L., Samatha, K.: Synthesis, structural and luminescence properties of Mn doped ZnO/Zn2SiO4 composite microphosphor. Spectrochim Acta A. 129, 274–279 (2014)CrossRefGoogle Scholar
  15. 15.
    Lin, C.C., Shen, P.: Sol-gel synthesis of zinc orthosilicate. J Non-Cryst Solids. 171, 281–289 (1994)CrossRefGoogle Scholar
  16. 16.
    Petrovykh, K.A., Rempel, A.A., Kortov, V.S., Buntov, E.A.: Sol-gel synthesis and photoluminescence of Zn2SiO4:Mn nanoparticles. Inorg Mater. 51(2), 152–157 (2015)CrossRefGoogle Scholar
  17. 17.
    El Ghoul, J., El Mir, L.: Sol-gel synthesis and luminescence of undoped and Mn-doped zinc orthosilicate phosphor nanocomposites. J Lumin. 148, 82–88 (2014)CrossRefGoogle Scholar
  18. 18.
    Taghavinia, N., Lerondel, G., Makino, H., Yamamoto, A., Yao, T., Kawazoe, Y., Goto, T.: Nanocrystalline Zn2SiO4:Mn2+ grown in oxidized porous silicon. Nanotechnology. 12, 547–551 (2001)CrossRefGoogle Scholar
  19. 19.
    Cannas, C., Mainas, M., Musinu, A., Piccaluga, G.: ZnO/SiO2 nanocomposites obtained by impregnation of mesoporous silica. Compos Sci Technol. 63(8), 1187–1191 (2003)CrossRefGoogle Scholar
  20. 20.
    Engku Ali, E.A.G., Matori, K.A., Saion, E., Sidek, H.A.A., Zaid, M.H.M., Alibe, I.M.: Effect of reaction time on structural and optical properties of porous SiO2 nanoparticles. Dig J Nanomater Biostruct. 12, 441–447 (2017)Google Scholar
  21. 21.
    Omri, K., Ghoul, J.E., Alyamani, A., Barthou, C., Mir, L.E.: Luminescence properties of green emission of SiO2/Zn2SiO4:Mn nanocomposite prepared by sol–gel method. Phys E Low-Dimensional Syst Nanostructures. 53, 48–54 (2013)CrossRefGoogle Scholar
  22. 22.
    Raevskaya, A.E., Panasiuk, Y.V., Stroyuk, O.L., Kuchmiy, S.Y., Dzhagan, V.M., Milekhin, A.G., Yeryukov, N.A., Sveshnikova, L.A., Rodyakina, E.E., Plyusnin, V.F., Zahn, D.R.T.: Spectral and luminescent properties of ZnO-SiO2 core-shell nanoparticles with size-selected ZnO cores. RSC Adv. 4(108), 63393–63401 (2014)CrossRefGoogle Scholar
  23. 23.
    Babu, K.S., Reddy, A.R., Reddy, K.V.: Controlling the size and optical properties of ZnO nanoparticles by capping with SiO2. Mater Res Bull. 49, 537–543 (2014)CrossRefGoogle Scholar
  24. 24.
    Yang, Y., Kim, D.S., Knez, M., Scholz, R., Berger, A., Pippel, E., Hesse, D., Gosele, U., Zacharias, M.: Influence of temperature on evolution of coaxial ZnO/Al2O3 one-dimensional heterostructures: from core-shell nanowires to spinel nanotubes and porous nanowires. J Phys Chem C. 112, 4068–4074 (2008)CrossRefGoogle Scholar
  25. 25.
    Li, Z., Zhang, H., Fu, H.: Facile synthesis and morphology control of Zn2SiO4:Mn nanophosphors using mesoporous silica nanoparticles as templates. J Lumin. 135, 79–83 (2013)CrossRefGoogle Scholar
  26. 26.
    Tomlins, G.W., Routbort, J.L., Mason, T.O.: Oxygen diffusion in single-crystal zinc oxide. J Am Ceram Soc. 81, 869–876 (1998)CrossRefGoogle Scholar
  27. 27.
    Ghoul, J.E., Mir, L.E.: Synthesis by sol–gel process, structural and luminescence of V and Mn doped α-Zn2SiO4. J Mater Sci Mater Electron. 26, 3550–3557 (2015)CrossRefGoogle Scholar
  28. 28.
    Carter, B., Norton, G.: Ceramic materials: science and engineering. Springer Science+Business Media, New York (2007)Google Scholar
  29. 29.
    El Mir, L., Amlouk, A., Barthou, C., Alaya, S.: Synthesis and luminescence properties of ZnO/Zn2SiO4/SiO2 composite based on nanosized zinc oxide-confined silica aerogels. Phys B Condens Matter. 388, 412–417 (2007)CrossRefGoogle Scholar
  30. 30.
    Ramimoghadam, D., Hussein, M., Taufiq-Yap, Y.: The effect of sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB) on the properties of ZnO synthesized by hydrothermal method. Int J Mol Sci. 13, 13275–13293 (2012)CrossRefGoogle Scholar
  31. 31.
    Podbršček, P., Dražić, G., Anžlovar, A., Orel, Z.C.: The preparation of zinc silicate/ZnO particles and their use as an efficient UV absorber. Mater Res Bull. 46, 2105–2111 (2011)CrossRefGoogle Scholar
  32. 32.
    Zaid, M.H.M., Matori, K.A., Aziz, S.A., Kamari, H.M., Zaidan, A.W., Fen, Y.W., Alibe, I.M.: Synthesis and characterization of low cost willemite based glass–ceramic for opto-electronic applications. J Mater Sci Mater Electron. 27, 11158–11167 (2016)CrossRefGoogle Scholar
  33. 33.
    Viezbicke, B.D., Patel, S., Davis, B.E., Birnie, D.P.: Evaluation of the Tauc method for optical absorption edge determination: ZnO thin films as a model system. Phys Status Solidi B. (2015).
  34. 34.
    Foo, K.L., Hashim, U., Muhammad, K., Voon, C.H.: Sol-gel synthesized zinc oxide nanorods and their structural and optical investigation for optoelectronic application. Nanoscale Res Lett. (2014).
  35. 35.
    Kumar, S., Sahare, P.D.: Observation of band gap and surface defects of ZnO nanoparticles synthesized via hydrothermal route at different reaction temperature. Opt Commun. 285, 5210–5216 (2012)CrossRefGoogle Scholar
  36. 36.
    Singh, R.G., Singh, F., Mehra, R.M., Kanjilal, D., Agarwal, V.: Synthesis of nanocrystalline α-Zn2SiO4 at ZnO–porous silicon interface: phase transition study. Solid State Commun. 151, 701–703 (2011)CrossRefGoogle Scholar

Copyright information

© Australian Ceramic Society 2018

Authors and Affiliations

  • Engku Abd Ghapur Engku Ali
    • 1
    • 2
  • Khamirul Amin Matori
    • 2
    • 3
    Email author
  • Elias Saion
    • 3
  • Sidek Hj. Ab Aziz
    • 3
  • Mohd Hafiz Mohd Zaid
    • 2
    • 3
  • Ibrahim Mustapha Alibe
    • 2
  1. 1.School of Fundamental SciencesUniversiti Malaysia TerengganuKuala TerengganuMalaysia
  2. 2.Materials Synthesis and Characterization Laboratory, Institute of Advanced TechnologyUniversiti Putra MalaysiaUPM SerdangMalaysia
  3. 3.Department of Physics, Faculty of ScienceUniversiti Putra MalaysiaUPM SerdangMalaysia

Personalised recommendations