Theoretical description of zirconia ceramics aging kinetics
- 38 Downloads
Abstract
An analytical approach for fraction calculation of monoclinic phase on zirconia surface under aging conditions was developed. The approach is based on a model of nucleation and growth of areas which underwent tetragonal to monoclinic transformation. Nucleation in this model takes place only at the material surface with nucleation rate proportional to the area of non-transformed zone. The nuclei are conical in shape; their initial dimensions and growth rate are constant. The resulting equations describe factual and observed monoclinic phase content on the surface of zirconia ceramics. The equations correlate well with experimental data on tetragonal zirconia ceramics aging kinetics.
Keywords
Zirconia TZP Aging ModelingNotes
Funding information
This work was supported by the Ministry of Education and Science of the Russian Federation (project no. 16.2100.2017/ПЧ, literature access) and by the Russian Science Foundation (project no. 16-19-10405, modeling expenses).
References
- 1.Kelly, J.R., Denry, I.: Stabilized zirconia as a structural ceramic: an overview. Dent Mater. 24, 289–298 (2008)CrossRefGoogle Scholar
- 2.Manicone, P.F., Iommetti, P.R., Raffaeli, L.: An overview of zirconia ceramics: basic properties and clinical applications. J Dent. 35, 819–826 (2007)CrossRefGoogle Scholar
- 3.Hannink, R.H.J., Kelly, P.M., Muddle, B.C.: Transformation toughening in zirconia-containing ceramics. J Am Ceram Soc. 83, 461–487 (2000)CrossRefGoogle Scholar
- 4.Bocanegra-Bernal, M.H., De La Torre, S.S.: Phase transitions in zirconium dioxide and related materials for high performance engineering ceramics. J Mater Sci. 37, 4947–4971 (2002)CrossRefGoogle Scholar
- 5.Garvie, R.C., Hannink, R.H., Pascoe, R.T.: Ceramic steel? Nature. 258, 703–704 (1975)CrossRefGoogle Scholar
- 6.Chevalier, J., Gremillard, L.: Ceramics for medical applications: a picture for the next 20 years. J Eur Ceram Soc. 29, 1245–1255 (2009)CrossRefGoogle Scholar
- 7.Luthardts, R.G., Holzhüter, M.H., Sandkuhl, O., Herold, V., Schnapp, J.D., Kuhlisch, E., Walter, M.: Reliability and properties of ground Y-TZP-zirconia ceramics. J Dent Res. 81, 487–491 (2002)CrossRefGoogle Scholar
- 8.Green, D.J., Swain, M.V., Hannink, R.H.J.: Transformation Toughening of Ceramics, first edn. CRC Press, Boca Raton (1989)Google Scholar
- 9.Becher, P.F., Swain, M.V.: Grain-size-dependent transformation behavior in polycrystalline tetragonal zirconia. J Am Ceram Soc. 75, 493–502 (1992)CrossRefGoogle Scholar
- 10.Yoshimura, M., Noma, T., Kawabata, K., Somiya, S.: Role of H2O on the degradation process of Y-TZP. J Mater Sci Lett. 6, 465–467 (1987)CrossRefGoogle Scholar
- 11.Kim, Y.S., Jung, C.H., Park, J.Y.: Low temperature degradation of yttria-stabilized tetragonal zirconia polycrystals under aqueous solutions. J Nucl Mater. 209, 326–331 (1994)CrossRefGoogle Scholar
- 12.Li, J.F., Watanabe, R., Zhang, B.P., Asami, K., Hashimoto, K.: X-ray photoelectron spectroscopy investigation on the low-temperature degradation of 2 mol% Y2O3-ZrO2 ceramics. J Am Ceram Soc. 79, 3109–3112 (1996)CrossRefGoogle Scholar
- 13.Chevalier, J., Gremillard, L., Virkar, A.V., Clarke, D.R.: The tetragonal-monoclinic transformation in zirconia: lessons learned and future trends. J Am Ceram Soc. 92, 1901–1920 (2009)CrossRefGoogle Scholar
- 14.Mota, Y.A., Cotes, C., Carvahlo, R.F., Machado, J.P.B., Leite, F.P.P., Souza, R.O.A., Ozcan, M.: Monoclinic phase transformation and mechanical durability of zirconia ceramic after fatigue and autoclave aging. J Biomed Mater Res B. 105, 1972–1977 (2017)CrossRefGoogle Scholar
- 15.De Souza, G.M., Zykus, A., Ghahnavyeh, R.R., Lawrence, S.K., Bahr, D.F.: Effect of accelerated aging on dental zirconia-based materials. J Mech Behav Biomed Mater. 65, 256–263 (2017)CrossRefGoogle Scholar
- 16.Gremilllard, L., Chevalier, J., Martin, L., Douillard, T., Begand, S., Hans, K., Oberbach, T.: Sub-surface assessment of hydrothermal ageing in zirconia-containing femoral heads for hip joint applications. Acta Biomater. 68, 286–295 (2018)CrossRefGoogle Scholar
- 17.Gremillard, L., Chevalier, J., Epicier, T., Deville, S., Fantozzi, G.: Modeling the aging kinetics of zirconia ceramics. J Eur Ceram Soc. 24, 3483–3489 (2004)CrossRefGoogle Scholar
- 18.Zhang, F., Vanmeensel, K., Inokoshi, M., Batuk, M., Hadermann, J., Van Meerbeek, B., Naert, I., Vleugels, J.: Critical influence of alumina content on the low temperature degradation of 2-3 mol% yttria-stabilized TZP for dental restorations. J Eur Ceram Soc. 35, 741–750 (2015)CrossRefGoogle Scholar
- 19.Cattani-Lorente, M., Durual, S., Amez-Droz, M., Wiskott, H.W.A., Scherrer, S.S.: Hydrothermal degradation of a 3Y-TZP translucent dental ceramic: a comparison of numerical predictions with experimental data after 2 years of aging. Dent Mater. 32, 394–402 (2016)CrossRefGoogle Scholar
- 20.Wei, C., Gremillard, L.: Towards the prediction of hydrothermal ageing of 3Y-TZP bioceramics from processing parameters. Acta Mater. 144, 245–256 (2018)CrossRefGoogle Scholar
- 21.Keuper, M., Eder, K., Berthold, C., Nickel, K.G.: Direct evidence for continuous linear kinetics in the low-temperature degradation of Y-TZP. Acta Biomater. 9, 4826–4835 (2013)CrossRefGoogle Scholar
- 22.Zhang, F., Inokoshi, M., Vanmeensel, K., Van Meerbeek, B., Naert, I., Vleugels, J.: Lifetime estimation of zirconia ceramics by linear ageing kinetics. Acta Mater. 92, 290–298 (2015)CrossRefGoogle Scholar
- 23.Cotič, J., Jevnikar, P., Kocjan, A.: Ageing kinetics and strength of airborne-particle abraded 3Y-TZP ceramics. Dent Mater. 33, 847–856 (2017)CrossRefGoogle Scholar
- 24.Inokoshi, M., Vanmeensel, K., Zhang, F., De Munck, J., Eliades, G., Minakuchi, S., Naert, I., Van Meerbeek, B., Vleugels, J.: Aging resistance of surface-treated dental zirconia. Dent Mater. 31, 182–194 (2015)CrossRefGoogle Scholar
- 25.Cattani-Lorente, M., Scherrer, S.S., Ammann, P., Jobin, M., Wiskott, H.W.A.: Low temperature degradation of a Y-TZP dental ceramic. Acta Biomater. 7, 858–865 (2011)CrossRefGoogle Scholar