Advertisement

Effect of processing conditions on (Ba1-xCax)(Ti0.9Sn0.1)O3 lead-free ceramics for the enhancement of structural, humidity sensing and dielectric properties

  • Abd El-razek MahmoudEmail author
  • Ahmed S. Afify
  • E. M. Saed
  • M. K. Gergs
Research
  • 16 Downloads

Abstract

The present study reports detailed guidelines for the preparation of high-quality perovskite (Ba1-xCax)(Ti0.9Sn0.1)O3 (BCTS) (x = 0.0–0.1) lead-free ceramics by solid state reaction. The compositions (x = 0.0–0.04) exhibit orthorhombic–tetragonal phase transition (TO-T), except x ≥ 0.06 that shows a pure tetragonal structure phase which conformed by X-ray diffraction (XRD). The microstructure and purity of the sintered ceramics were examined using scanning electron microscope equipped with an energy dispersive spectrometer (SEM-EDS). Some pores existing in the grain boundary were observed at high concentrations of Ca content. Field emission scanning electron microscope (FE-SEM) was used to examine the morphology of sensing film of the calcined powder and it was prepared as a humidity sensor using screen-printing technique. All the compositions exhibited poor sensitivity toward the humidity sensing in the range of 0–98% RH at room temperature. Hot-stage microscope (HSM) has been used to investigate the sintering curve of the pure calcined powder and it was found that the suitable sintering temperature for obtaining a fully dense microstructure is 1400 °C. The highest values of permittivity (εr = 46,515, at 10 kHz) and piezoelectric coefficient (d33 = 510 pC/N) were achieved in the composition x = 0.02. The difference between alumina and platinum crucibles for the processing of the powders has been introduced, and by the aid of dispersive spectrometer analysis and it was indicated that use of alumina crucibles leads to the undesired presence of Al in the ceramics, which can be prevented by using a capped platinum crucibles.

Keywords

Lead-free ceramics Phase formation Processing Humidity sensing Dielectric properties 

Notes

Acknowledgments

Authors are immensely grateful to Prof. Jean Marc Tulliani (DISAT, Politecnico di Torino, Italy) for his support and for Dr. A. Mohamed (Chemistry Department, Taibah University, Saudi Arabia) for his comments on an earlier version of the manuscript.

Funding information

Abd El-razek and A. Afify received financial support from Erasmus-Mundus program (EMECW, WELCOME Project Action 2 (scholarship application number WELC1104035 and ELC11011869), respectively, Coordination Office: Politecnico di Torino, Turin, Italy).

References

  1. 1.
    Jaffe, B., Cook Jr., W.R., Jaffe, H.: Piezoelectric Ceramics. Academic Press, New York (1971)Google Scholar
  2. 2.
    Takahashi, T.: Am. Ceram. Soc. Bull. 69, 691 (1990)Google Scholar
  3. 3.
    Lines, M.E., Glass, A.M.: Principles and Applications of Ferroelectric and Related Materials. Oxford University Press, Oxford (1979)Google Scholar
  4. 4.
    Udomporn, A., Ananta, S.: J. Mater. Lett. 58, 1154 (2004)CrossRefGoogle Scholar
  5. 5.
    Forrester, J.S., Zobec, J.S., Phelan, D., Kisi, E.H.: J. Solid State Chem. 177(10), 3553 (2004)Google Scholar
  6. 6.
    Wongmaneerung, R., Khamman, O., Yimnirun, R., Ananta, S.: J. Electroceram. 21, 798 (2008)CrossRefGoogle Scholar
  7. 7.
    Hollenstein, E., Damjanovic, D., Setter, N.: J. Eur. Ceram. Soc. 27, 4093 (2007)CrossRefGoogle Scholar
  8. 8.
    Zhang, S.J., Xia, R., Shrout, T. R.: J. Appl. Phys. 100, 104108 (2006)CrossRefGoogle Scholar
  9. 9.
    Zhao, L., Zhang, B.-P., Zhou, P.-F., Zhu, L.-F., Li, J.-F.: J. Eur. Ceram. Soc. 35, 533 (2015)CrossRefGoogle Scholar
  10. 10.
    Li, W., Xu, Z., Chu, R., Peng, F., Zang, G.: J. Eur. Ceram. Soc. 32, 517 (2012)CrossRefGoogle Scholar
  11. 11.
    Bao, H., Zhou, C., Xue, D., Gao, J., Ren, X.: J. Phys. D. Appl. Phys. 43, 465401 (2010)CrossRefGoogle Scholar
  12. 12.
    Li, W., Xu, Z., Chu, R., Fu, P., Zang, G.: J. Mater. Lett. 64, 2325 (2010)CrossRefGoogle Scholar
  13. 13.
    Zhu, L.-F., Zhang, B.-P., Zhao, L., Li, J.-F.: J. Mater. Chem. C. 2, 4764 (2014)CrossRefGoogle Scholar
  14. 14.
    Yao, Y.G., Zhou, C., Lv, D.C., Wang, D., Wu, H.J., Yang, Y. D., et al.: EPL. 98(2), 27008 (2012)Google Scholar
  15. 15.
    Fujii, I., Shimizu, S., Yamashita, K., Nakashima, K., Kumada, N., Moriyoshi, C., Kuroiwa, Y., Fujikawa, Y., Tanaka, D., Furukawa, M., Wada, S.: Appl. Phys. Lett. 99, 202902-1-3 (2011)CrossRefGoogle Scholar
  16. 16.
    Wada, S., Nitta, M., Kumada, N., Tanaka, D., Furukawa, M., Ohno, S., Moriyoshi, C., Kuroiwa, Y.: Jpn. J. Appl. Phys. 47, 7678 (2008)CrossRefGoogle Scholar
  17. 17.
    Wang, J., Xu, B.K., Ruan, S.P., Wang, S.P.: Mater. Chem. Phys. 78, 746 (2003)CrossRefGoogle Scholar
  18. 18.
    Jingbo, L., Wenchao, L., Yanxi, Z., Zhimin, W.: Sens. Actuators B Chem. 75, 11 (2001)CrossRefGoogle Scholar
  19. 19.
    Mahmoud, A. E.-r., Viola, G., Afify, A.S., Babeer, A.M., Ferrairs M., J. Porous. Mater.  https://doi.org/10.1007/s10934-016-0315-8 (In progress)
  20. 20.
    Rodriguez-Navarro, C., Ruiz-Agudo, E., Luque, A., Rodriguez-Navarro, A.B., Ortega-Huertas, M.: Am. Mineral. 94, 578 (2009)CrossRefGoogle Scholar
  21. 21.
    Arvanitidis, I., Siche, D., Seetharaman, S.: Metall. Mater. Trans. A. 27(3), 409 (1996)CrossRefGoogle Scholar
  22. 22.
    Chen, M., Xu, Z., Chu, R., Qiu, H., Li, M., Liu, Y., Shao, L., Ma, S., Ji, W., Li, W., Gong, S., Li, G.: Physica B. 433, 43 (2014)CrossRefGoogle Scholar
  23. 23.
    Li, W., Xu, Z., Chu, R., Fu, P., Zang, G.: J. Am. Ceram. Soc. 94(12), 4131 (2011)CrossRefGoogle Scholar
  24. 24.
    Zhu, X.N., Zhang, W., Chen, X.M.: J. AIP Adv. 3, 082125 (2013)CrossRefGoogle Scholar
  25. 25.
    Zhu, L.-F., Zhang, B.-P., Zhao, X.-K., Zhao, L., Yao, F.-Z., Han, X., Zhou, P.-F., Jing-Feng: Appl. Phys. Lett. 103, 072905 (2013)CrossRefGoogle Scholar
  26. 26.
    McCafferty, E., Zettlemoyer, A.: Discuss. Faraday Soc. 52, 239 (1971)CrossRefGoogle Scholar
  27. 27.
    Traversa, E.: Sensors Actuators B Chem. 23, 135 (1995)CrossRefGoogle Scholar
  28. 28.
    Seiyama, T., Yamazoe, N., Arai, H.: Sens. Actuators B Chem. 4, 85 (1983)CrossRefGoogle Scholar
  29. 29.
    Lei, C., Bokov, A., Ye, Z.-G.: J. Appl. Phys. 101, 084105 (2007)CrossRefGoogle Scholar
  30. 30.
    Mahmoud, A.E.-r., Afify, A.S., Mohamed, A.: J. Mater. Sci. Mater. Electron. 28, 11591 (2017)CrossRefGoogle Scholar
  31. 31.
    Mitsui, T., Westphal, W.B.: Phys. Rev. 124, 1354 (1961)CrossRefGoogle Scholar
  32. 32.
    Yeo, D.L.Y., Lastochkin, D., Wang, S.-C., Chang, H.-C.: J. Phys. Rev. Lett. 92, 133902 (2004)Google Scholar
  33. 33.
    Selmi, A., Khaldi, O., Mascot, M., Jomni, F., Carru, J.C.: J. Mater. Sci. Mater. Electron. 27, 11299 (2016)CrossRefGoogle Scholar
  34. 34.
    Wang, L., Wang, X., Li, B.: J. Solid State Commun. 149, 1877 (2009)CrossRefGoogle Scholar

Copyright information

© Australian Ceramic Society 2019

Authors and Affiliations

  1. 1.Physics Department, Faculty of ScienceSouth Valley UniversityQenaEgypt
  2. 2.Department of Applied Science and TechnologyInstitute of Materials Physics and EngineeringTorinoItaly
  3. 3.University Central Laboratory, College of Science and Humanities, Prince Sattam bin Abdulaziz UniversityAlKharjSaudi Arabia

Personalised recommendations