Advertisement

The role of carbon in the formation mechanism of F-type centers in α-Al2O3:C,Mg single crystals

  • Yihang Wang
  • Canhui Xu
  • Jianyu Chen
  • Daibing Luo
  • Yong Gang Yuan
  • TaiPing Peng
Research
  • 4 Downloads

Abstract

In this study, an α-Al2O3:C,Mg single crystal was grown using the Czochralski method with graphite resistance heating, Al2O3, MgO, and graphite powder as raw materials. Both the graphite heating unit and the shield served as the carbon source during the growth process. The structure and the optical properties of the crystal were investigated. The as-grown crystal shows a prominent absorption band at 206 nm, 230 nm, and 256 nm. The excitation-emission (EE) spectrum reveals a weak luminescence center (435/510 nm) that is attributed to the \( {\mathrm{F}}_2^{2+} \)(2 Mg). We calculate the concentration of the F-type centers using Smakula’s equation. Using the first principles simulation method, we studied the relation between the C atoms and the absorption properties of the crystal, and we discuss the role of carbon in the formation mechanism of the F-type luminescence centers for a α-Al2O3:C,Mg crystal.

Keywords

Crystals growth Al2O3:C,Mg Color centers 

Notes

References

  1. 1.
    Structure and properties of MgO and Al2O3 ceramics, Advances In Ceramics Vol. 10, edited by W.D. Kingery (American Ceramic Society, Columbus, OH, 1983)Google Scholar
  2. 2.
    Martynovich, E.F., Baryshnikov, V.I., Grigorov, V.A.: Opt. Commun, 53, 257 (1985); Sov. Tech. Phys. Lett, 11, 81 (1985)Google Scholar
  3. 3.
    Akselrod, M.S., et al.: A thin-layer defective α-Al2O3:C, beta TL detector. Radiat. Prot. Dosim. 66(1–4), 105–110 (1996)CrossRefGoogle Scholar
  4. 4.
    Shikama, T., Yasuda, K., Yamamoto, S., Kinoshita, C., Zinkle, S.J., Hodgson, E.R., J. Anal. Chem. USSR 271–272, 560 (1999)Google Scholar
  5. 5.
    Gotz, R., Mizaikoff, B., Kellner, R.: Appl. Spectrosc. 52, 1248 (1998)CrossRefGoogle Scholar
  6. 6.
    Akselrod, M.S., Akselrod, A.E., Orlov, S.S., Sanyal, S., Underwodd, T.H.: Fluorescent aluminum oxide crystals for volumetric optical data storage and imaging application. J. Fluoresc. 13(6), 503–511 (2003)CrossRefGoogle Scholar
  7. 7.
    Akselrod, M.S.: US Patent #6,864,434 (Published: 25 January 2005)Google Scholar
  8. 8.
    Akselrod, M.S., Akselrod, A.E.: New α-Al2O3:C,Mg crystals for radiophotoluminescent dosimetry and optical imaging. Radiat. Prot. Dosim. 119(1–4), 218–221 (2006)CrossRefGoogle Scholar
  9. 9.
    Akselrod, G.M., Akselrod, M.S., Benton, E.R., Yasuda, N.: A novel Al2O3 fluorescent nuclear track detector for heavy charged particles and neutrons. Nucl. Instrum. Meth. B 247, 295–306 (2006)CrossRefGoogle Scholar
  10. 10.
    Sykora, G.J., Salasky, M., Akselrod, M.S.: Properties of novel fluorescent nuclear track detectors for use in passive neutron dosimetry. Radiat. Meas. 43, 1017–1023 (2008a)CrossRefGoogle Scholar
  11. 11.
    Akselrod, M.S., Orlov, S.S., Akselrod, G.M.: Bit-wise volumetric optical memory utilizing two-photon absorption in aluminum oxide medium. Jpn. J. Appl. Phys. 43, 4908 (2004)CrossRefGoogle Scholar
  12. 12.
    Sykora, G.J., Akselrod, M.S., Salasky, M.: Properties of novel fluorescent nuclear track detectors for use in passive neutron dosimetry. Radiat. Meas. 43, 1017–1023 (2008)CrossRefGoogle Scholar
  13. 13.
    Kalita, J.M., Chithambo, M.L.: A comparative study of the dosimetric features of α-Al2O3:C,Mg and α-Al2O3:C. Radiat. Prot. Dosim. 177(3), 261–271 (2017)CrossRefGoogle Scholar
  14. 14.
    Kalita, J.M., Chithambo, M.L.: The effect of pre-dose on thermally and optically stimulated luminescence from α-Al2O3:C,Mg and α-Al2O3:C. Appl. Radiat. Isot. 140, 69–75 (2018)CrossRefGoogle Scholar
  15. 15.
    Akselrod, M.S., Sykora, G.J.: Fluorescent nuclear track detector technology - a new way to do passive solid state dosimetry. Radiat. Meas. 46, 1671–1679 (2011a)CrossRefGoogle Scholar
  16. 16.
    Akselrod, M.S., Yoder, R.C., Akselrod, G.M.: Confocal fluorescent imaging of tracks from heavy charged particles utilising new Al2O3:C, Mg crystals. Radiat. Prot. Dosim. 119(1–4), 357–362 (2006)CrossRefGoogle Scholar
  17. 17.
    Eller, S.A., Ahmed, M.F., Bartz, J.A., Akselrod, M.S., et al.: Radiophotoluminescence properties of Al2O3:C,Mg crystals[J]. Radiat. Meas. 56, 179–182 (2013)CrossRefGoogle Scholar
  18. 18.
    Akselrod, M.S., Kortov, V.S., Kravetsky, D.J., Gotlib, V.L.: Highly sensitive thermoluminescent anion-defect α-Al2O3:C single crystal detectors. Radiat. Prot. Dosim. 33(1/4), 119–122 (1990)CrossRefGoogle Scholar
  19. 19.
    Akselrod, M.S., McKeever, S.W.S.: A radiation dosimetry method using pulsed optically stimulated luminescence[J]. Radiat. Prot. Dosim. 81, 167–176 (1999)CrossRefGoogle Scholar
  20. 20.
    Johnson, C.E., Benton, E.R., Yasuda, N., Benton, E.V.: Analysis of short-range tracks and large track fluences in CR-39 PNTD using atomic force microscopy. Radiat. Meas. 44, 742–745 (2009)CrossRefGoogle Scholar
  21. 21.
    Ghergherehchi, M., Kim, H.W., Kim, Y.S., Afarideh, H., Chai, J.S.: A comparative study on experimental and simulation responses of CR-39 to neutron spectra from a 252Cf source. Nucl. Technol. Radiat. 28(3), 293–298 (2013)CrossRefGoogle Scholar
  22. 22.
    d’Ericco, F.: Radiation dosimetry and spectroscopy with superheated emulsions[J]. Nucl. Instrum. Meth. B 184, 229–254 (2001)CrossRefGoogle Scholar
  23. 23.
    Ruan, J.l., Li, H.Y., Song, J.w., et al.: Automated method of tracing proton tracks in nuclear emulsions. Nucl. Inst. Methods Phys. Res. A. 789(1–7), (2015)Google Scholar
  24. 24.
    Sykora, G.J., Akselrod, M.S.: Photoluminescence study of photochromically and radiochromically transformed Al2O3:C,Mg crystal used for fluorescent nuclear track detectors. Radiat. Meas. 45, 631–634 (2010)CrossRefGoogle Scholar
  25. 25.
    Yang, X., Li, H., Bi, Q., Cheng, Y., Tang, Q., Xu, J.: Influence of carbon on the thermoluminescence and optically stimulated luminescence of α-Al2O3:C crystals. J. Appl. Phys. 104, 123112 (2008)CrossRefGoogle Scholar
  26. 26.
    Kortov, V., Milman, I.: Some new data on thermoluminescence properties of dosimetric α-Al2O3:C crystals. Radiat. Prot. Dosim. 65(1), 179–184 (1996)CrossRefGoogle Scholar
  27. 27.
    Zhao, G., Si, J., Xu, X., Xu, J., Song, H., Zhou, Y.: J. Cryst. Growth. 252, 355 (2003)CrossRefGoogle Scholar
  28. 28.
    Jianwei, X., Yongzong, Z., Guoqing, Z.: J. Cryst. Growth. 193, 123 (1998)CrossRefGoogle Scholar
  29. 29.
    Kulkarni, M.S., Mishra, D.R., Muthe, K.P., Singh, A., Roy, M., Gupta, S.K., Kannan, S.: Radiat. Meas. 39, 277 (2005)CrossRefGoogle Scholar
  30. 30.
    Lee, K.H., Crawford, J.H.: Electron centers in single crystal Al2O3. Phys. Rev. B. 15, 4065–4074 (1977)CrossRefGoogle Scholar
  31. 31.
    Evans, B.D., Stapelbroek, M.: Optical properties of the F+ center in crystalline Al2O3. Phys. Rev. B. 18, 7089–7098 (1978)CrossRefGoogle Scholar
  32. 32.
    Zhou, G., Dong, Y., Xu, J., Li, H., Si, J.L., Qian, X., Li, X.: 140 mm sapphire crystal growth by temperature gradient techniques and its color centers. Mater. Lett. 60, 901–904 (2006)CrossRefGoogle Scholar
  33. 33.
    Belyaev, L.M.: Ruby and Sapphire, p. 4. Amerind Publishing LTD, New York (1982)Google Scholar
  34. 34.
    Fowler, W.B. (Ed): Physics of color centers, Academic, New York, chaps: 2 and 6 (1968)Google Scholar
  35. 35.
    Sykora, G.J.: Photo and radiochromic transformation in Al2O3:C,Mg fluorescent nuclear track detectors and high resolution imaging of radiation fields. Ph.D Dissertation, Oklahoma State University (2010)Google Scholar
  36. 36.
    Kulis, P.A., Springis, M.J., Tale, I.A., Vainer, V.S., Valbis, J.A.: Impurity-associated colour centers in Mg and Ca doped Al2O3 single crystal. Phys. Status Solidi B. 104, 719–725 (1981)CrossRefGoogle Scholar
  37. 37.
    Evans, B.D., Pogatshnik, G.J., Chen, Y.: Optical properties of lattice defects in α-Al2O3. Nucl. Instrum. Meth. B 91, 258–262 (1994)CrossRefGoogle Scholar
  38. 38.
    Dienes, G.J., Welch, D.O., Fischer, C.R., et al.: Shell-model calculation of some point-defect properties in α-Al2O3. Phys. Rev. B. 11, 3060–3070 (1975)CrossRefGoogle Scholar
  39. 39.
    Borodin, V.A., Ionov, A.M., Yalovets, T.N.: Void formation upon annealing of shaped sapphire crystals. J. Cryst. Growth. 10(1), 157–164 (1990)CrossRefGoogle Scholar

Copyright information

© Australian Ceramic Society 2019

Authors and Affiliations

  1. 1.Institute of Nuclear Physics and ChemistryChina Academy of Engineering PhysicsMianyangChina
  2. 2.Shanghai Institute of Optics and Fine MechanicsChinese Academy of SciencesShanghaiChina
  3. 3.Analytical & Testing CenterSichuan UniversityChengduChina

Personalised recommendations