Structural, optical, and dielectric properties of Cu, Ni-doped Zn ferrites

  • Tuğba Şaşmaz KuruEmail author
  • Mehmet Kuru


Ferrite nanocomposites with the composition Cu0.5Zn0.5Fe2O4 and Ni0.5Zn0.5Fe2O4 were prepared by co-precipitation method. The effect of dopant to spinel ferrite ZnFe2O4 on the structural, morphological, optical, and dielectric properties of the as-prepared Cu-Zn and Ni-Zn ferrites were investigated. The structural, elemental, and optical properties conducted by using X-ray diffraction (XRD) technique with Cu/Kα radiation, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDX), Raman spectroscopy, and UV–Vis reflectance spectroscopy. For the electrical properties of the Cu-Zn and Ni-Zn ferrites, a real part of the dielectric constant and AC conductivity have been investigated with a frequency range of 20 Hz to 10 MHz at different temperature for each sample. The substitutions of Cu and Ni into the ZnFe2O4 nanocomposites crystal size calculated 20.36 nm for Cu-Zn ferrite and 10.95 nm for Ni-Zn ferrite. Also, the energy band gap of Cu-Zn ferrite is 2.6 eV and Ni-Zn ferrite is 2.83 eV. These results show that the energy band gap is increased when the crystal size is reduced by the substitution of Ni into the Zn ferrite. The dielectric constant and AC conductivity of Cu-Zn ferrite is bigger than the Ni-Zn ferrite at low frequencies. This situation is related to the structural parameters. Also, the AC conductivity increases with an increasing frequency and temperature.


Cu-Zn ferrites Ni-Zn ferrites Co-precipitation AC conductivity Dielectric constant 



  1. 1.
    Ashiq, M.N., Naz, F., Malana, M.A., Gohar, R.S., Ahmad, Z.: Role of Co–Cr substitution on the structural, electrical and magnetic properties of nickel nano-ferrites synthesized by the chemical co-precipitation method. Mater Res Bull. 47, 683–686 (2012)CrossRefGoogle Scholar
  2. 2.
    Mahmoud, M.H., Hassan, A.M., Said, A.E.A., Hamdeh, H.H.: Structural; magnetic and catalytic properties of nanocrystalline Cu0.5Zn0.5Fe2O4 synthesized by microwave combustion and ball milling methods. J Mol Struct. 1114(1–6), (2016)Google Scholar
  3. 3.
    Li, L.Z., Peng, L., Zhong, X.X., Wang, R., Tu, X.Q.: Structural, magnetic and electrical properties of CuZn ferrite nanopowders. J Magn Magn Mater. 419, 407–411 (2016)CrossRefGoogle Scholar
  4. 4.
    Lamani, A.R., Jayanna, H.S., Parameswara, P., Somashekar, R., Ramachander, R.R., Prasanna, G.D.: Dielectric properties of polycrystalline Cu–Zn ferrites at microwave frequencies. J. Alloy. Compd. 509, 5692–5695 (2011)CrossRefGoogle Scholar
  5. 5.
    Zaki, H.M.: The effect of zinc concentration on vacancies jump rate, diffusion coefficient and jump length in Cu–Zn ferrite. J Phys Chem Solids. 70, 889–892 (2009)CrossRefGoogle Scholar
  6. 6.
    Liu, Y., Hsu, J., Fu, Y., Tsai, K.: Preparation of Cu-Zn ferrite photocatalyst and its application. International Int J Hydrogen Energ. 41, 15696–15702 (2016)CrossRefGoogle Scholar
  7. 7.
    Parashar, J., Saxena, V.K., Jyoti, B.D., Sharma, K.B.: Dielectric behavior of Zn substituted Cu nano-ferrites. J Magn Magn Mater. 394, 105–110 (2015)CrossRefGoogle Scholar
  8. 8.
    Khan, Z.H., Rahman, M.M., Sikder, S.S., Hakim, M.A., Saha, D.K.: Complex permeability of Fe-deficient Ni–Cu–Zn ferrites. J. Alloy. Compd. 548, 208–215 (2013)CrossRefGoogle Scholar
  9. 9.
    Abu El-Fadl, A., Hassan, A.M., Mahmoud, M.H., Tatarchuk, T., Yaremiy, I.P., Gismelssed, A.M., Ahmed, M.A.: Synthesis and magnetic properties of spinel Zn1−xNixFe2O4 (0.0≤ x≤ 1.0) nanoparticles synthesized by microwave combustion method. J Magn Magn Mater. 471, 192–199 (2019)CrossRefGoogle Scholar
  10. 10.
    Şaşmaz Kuru, T., Kuru, M., Bağcı, S.: Structural, dielectric and humidity properties of Al-Ni-Zn ferrite prepared by co-precipitation method. J. Alloy. Compd. 753(483–490), (2018)Google Scholar
  11. 11.
    Şentürk, E., Köseoğlu, Y., Şaşmaz, T., Alan, F., Tan, M.: RC circuit and conductivity properties of Mn0.6Co0.4Fe2O4 nanocomposite synthesized by hydrothermal method. J Alloy Compd. 578, 90–95 (2013)CrossRefGoogle Scholar
  12. 12.
    Ramesh, B., Ravinder, D.: Electrical properties of Li–Mn ferrites. Mater Lett. 62, 2043–2046 (2008)CrossRefGoogle Scholar
  13. 13.
    Rajesh Babu, B., Tatarchuk, T.: Elastic properties and antistructural modeling for nickel-zinc ferrite-aluminates. Mater Chem Phys. 207, 534–541 (2018)CrossRefGoogle Scholar
  14. 14.
    Kaiser, M.: Effect of nickel substitutions on some properties of Cu–Zn ferrites. J Alloy Compd. 468, 15–21 (2009)CrossRefGoogle Scholar
  15. 15.
    Ahmed, M.A., Hassan, H.E., Eltabey, M.M., Latka, K., Tatarchuk, T.R.: Mössbauer spectroscopy of MgxCu0.5-xZn0.5Fe2O4 (x = 0.0, 0.2 and 0.5) ferrites system irradiated by γ-rays. Pysica B. 530, 195–200 (2018)CrossRefGoogle Scholar
  16. 16.
    Şaşmaz Kuru, T., Şentürk, E., Eyüpoğlu, V.: Overlapping large polaron conductivity mechanism and dielectric properties of Al0.2Cd0.8Fe2O4 ferrite nanocomposite. J Supercond Nov Magn. 30, 647–655 (2017)CrossRefGoogle Scholar
  17. 17.
    Shoeb, M., Singh, B.R., Khan, J.A., Khan, W., Singh, B.N., Singh, H.B., Naqvi, A.H.: ROS-dependent anticandidal activity of zinc oxide nanoparticles synthesized by using egg albumen as a biotemplate. Adv Nat Sci Nanosci Nanotechnol. 4, 035015 (2013)CrossRefGoogle Scholar
  18. 18.
    Nouroozi, F., Farzaneh, F.: Synthesis and characterization of brush-like ZnO nanorods using albumen as biotemplate. J Braz Chem Soc. 22, 484–488 (2011)CrossRefGoogle Scholar
  19. 19.
    Habibi, M.H., Parhizkar, J.: Cobalt ferrite nano-composite coated on glass by doctor blade method for photo-catalytic degradation of an azo textile dye reactive red 4: XRD, FESEM and DRS investigations. Spectrochim Acta A. 150, 879–885 (2015)CrossRefGoogle Scholar
  20. 20.
    Xue, L.C., Wu, L.Q., Li, S.Q., Li, Z.Z., Tang, G.D., Qi, W.H., Ge, X.S., Ding, L.L.: Study of electron transition energies between anions and cations in spinel ferrites using differential UV–vis absorption spectra. Physica B. 492, 61–64 (2016)CrossRefGoogle Scholar
  21. 21.
    Parrey, K.A., Aziz, A., Ansari, S.G., Mir, S.H., Khosla, A., Niazi, A.: Synthesis and characterization of an efficient hole-conductor free halide perovskite CH3NH3PbI3 semiconductor absorber based photovoltaic device for IOT. J Electrochem Soc. 165, 3023–3029 (2018)CrossRefGoogle Scholar
  22. 22.
    Yakuphanoglu, F., Ilican, S., Caglar, M., Caglar, Y.: Microstructure and electro-optical properties of sol-gel derived Cd-doped ZnO films. Superlattice Microst. 47, 732–743 (2010)CrossRefGoogle Scholar
  23. 23.
    El Sayed, A.M., Taha, S., Said, G., Al-Ghamdi, A.A., Yakuphanoglu, F.: Structural and optical properties of spin coated Zn1-xCrxO nanostructures. Superlattice Microst. 60, 108–119 (2013)CrossRefGoogle Scholar
  24. 24.
    Joshi, S., Kumar, M., Chhoker, S., Srivastava, G., Jewariya, M., Singh, V.N.: Structural, magnetic, dielectric and optical properties of nickel ferrite nanoparticles synthesized by co-precipitation method. J Mol Struct. 1076, 55–62 (2014)CrossRefGoogle Scholar
  25. 25.
    Kumbhar, S.S., Mahadik, M.A., Mohite, V.S., Rajpure, K.Y., Kim, J.H., Moholkar, A.V., Bhosale, C.H.: Structural, dielectric and magnetic properties of Ni substituted zinc ferrite. J Magn Magn Mater. 363, 114–120 (2014)CrossRefGoogle Scholar
  26. 26.
    Atiq, S., Majeed, M., Ahmad, A., Kumail Abbas, S., Saleem, M., Riaz, S., Naseem, S.: Synthesis and investigation of structural, morphological, magnetic, dielectric and impedance spectroscopic characteristics of Ni-Zn ferrite nanoparticles. Ceram Int. 43, 2486–2494 (2017)CrossRefGoogle Scholar
  27. 27.
    Hashim, M., Alimuddin, K.S., Koo, B.H., Shirsath, S.E., Mohammed, E.M., Shah, J., Kotnala, R.K., Choi, H.K., Chung, H., Kumar, R.: Structural, electrical and magnetic properties of co–cu ferrite nanoparticles. J Alloy Compd. 518, 11–18 (2012)CrossRefGoogle Scholar
  28. 28.
    Patil, R., Roy, A.S., Anilkumar, K.R., Jadhav, K.M., Ekhelikar, S.: Dielectric relaxation and ac conductivity of polyaniline–zinc ferrite composite. Compos Part B-Eng. 43, 3406–3411 (2012)CrossRefGoogle Scholar
  29. 29.
    Choodamani, C., Rudraswamy, B., Chandrappa, G.T.: Structural, electrical, and magnetic properties of Zn substituted magnesium ferrite. Ceram Int. 42, 10565–10571 (2016)CrossRefGoogle Scholar

Copyright information

© Australian Ceramic Society 2019

Authors and Affiliations

  1. 1.Vocational School of Health Services, Radiotherapy Programİstanbul Okan UniversityIstanbulTurkey
  2. 2.Department of Metallurgy and Materials EngineeringOndokuz Mayıs UniversitySamsunTurkey
  3. 3.Department of Materials Science and EngineeringErciyes UniversityKayseriTurkey

Personalised recommendations