Journal of the Australian Ceramic Society

, Volume 53, Issue 2, pp 963–974 | Cite as

The effect of nano-copper additives on the porosity, mechanical properties, and microstructure of alumina ceramics using commercial rice husk ash as a pore former

  • Mohammed Sabah Ali
  • M. A. Azmah Hanim
  • S. M. Tahir
  • C. N. A. Jaafar
  • M. Norkhairunnisa
  • Khamirul Amin Matori


The aim of the present research is to examine the effect of Cu metal addition in nano-scale particle size on the mechanical properties and porosity of porous alumina ceramics using commercial rice husk ash as pore forming agent and silica (SiO2) source. Porous alumina ceramics reinforced were prepared using nano-scale Cu metal particles as their strengthening phase. Solid-state and sacrificial techniques were used to prepare the porous alumina reinforced ceramics. A field emission scanning electron microscope (FESEM), X-ray diffraction (XRD), and transmission and electron microscope (TEM) were used to analyze the microstructure and ceramic phases. Different ratios of Cu metal were added (3, 6, 9, and 12 wt%) at different ratios of commercial rice husk ash. The results of this investigation show that with increasing ratios of Cu metal, the porosity decreased and the mechanical properties increased. The increase in the mechanical properties could be attributed to the decrease in the porosity, the toughening mechanism, increase density of porous alumina ceramics, and formation of the tenorite (CuO) phase due to sintering at high temperature (1600 °C). Some potential applications include purging of gas filtration and thermal insulation.


Nano-copper Rice husk ash Porosity Mechanical properties Porous ceramics 



The financial support provided by Universiti Putra Malaysia is much appreciated. Also, the authors would like to thank the Iraqi Government/Ministry of Higher Education and Scientific Research for the scholarship provided.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Zhang, R., Fang, D., Chen, X., Pei, Y.: Effect of pre-oxidation on the microstructure, mechanical and dielectric properties of highly porous silicon nitride ceramics. Ceram. Int. 38, 6021–6026 (2012)CrossRefGoogle Scholar
  2. 2.
    Jean, G., Sciamanna, V., Demuynck, M., Cambier, F., Gonon, M.: Macroporous ceramics: novel route using partial sintering of alumina-powder agglomerates obtained by spray-drying. Ceram. Int. 40, 10197–10203 (2014)CrossRefGoogle Scholar
  3. 3.
    Tang, F., Fudouzi, H., Uchikoshi, T., Sakka, Y.: Preparation of porous materials with controlled pore size and porosity. J. Eur. Ceram. Soc. 24, 341–344 (2004)CrossRefGoogle Scholar
  4. 4.
    Yu, P., Wang, J., Yu, F., Yang, J.: Effect of pure β-Si3N4 powder on microstructure and mechanical properties of porous Si3N4 ceramics. In: IOP Conference Series: Materials Science and Engineering. 012006 (2011)Google Scholar
  5. 5.
    Dessai, R.R., Desa, J., Sen, D., Mazumder, S.: Effects of pressure and temperature on pore structure of ceramic synthesized from rice husk: a small angle neutron scattering investigation. J. Alloys Compd. 564, 125–129 (2013)CrossRefGoogle Scholar
  6. 6.
    Wang, Z., Feng, P., Geng, P., Xu, C., Akhtar, F.: Porous mullite thermal insulators from coal gangue fabricated by a starch-based foam gel-casting method. J. Aust. Ceram. Soc. 1–5 (2017)Google Scholar
  7. 7.
    Zhang, J., Malzbender, J.: Mechanical characterization of micro- and nano-porous alumina. Ceram. Int. 41, 10725–10729 (2015)CrossRefGoogle Scholar
  8. 8.
    Hammel, E., Ighodaro, O.-R., Okoli, O.: Processing and properties of advanced porous ceramics: an application based review. Ceram. Int. 40, 15351–15370 (2014)CrossRefGoogle Scholar
  9. 9.
    Dong, Y., Wang, C.-A., Zhou, J., Hong, Z.: A novel way to fabricate highly porous fibrous YSZ ceramics with improved thermal and mechanical properties. J. Eur. Ceram. Soc. 32, 2213–2218 (2012)CrossRefGoogle Scholar
  10. 10.
    Yan, W., Lin, X., Chen, J., Li, N., Wei, Y., Han, B.: Effect of TiO 2 addition on microstructure and strength of porous spinel (MgAl 2 O 4) ceramics prepared from magnesite and Al (OH) 3. J. Alloys Compd. 618, 287–291 (2015)CrossRefGoogle Scholar
  11. 11.
    Li, G., Fan, Y., Zheng, Y., Wu, Y.: Preparation and properties of high toughness RBAO macroporous membrane support. Ceram. Int. 36, 2025–2031 (2010)CrossRefGoogle Scholar
  12. 12.
    Liu, S., Zeng, Y.-P., Jiang, D.: Effects of preheat-treated aluminosilicate addition on the phase development, microstructure, and mechanical properties of mullitized porous OBSC ceramics. Int. J. Appl. Ceram. Technol. 6, 617–625 (2009)CrossRefGoogle Scholar
  13. 13.
    Hou, Z., Ye, F., Liu, L., Liu, Q., Zhang, H.: Effects of solid content on the phase assemblages, mechanical and dielectric properties of porous α-SiAlON ceramics fabricated by freeze casting. Ceram. Int. 39, 1075–1079 (2013)CrossRefGoogle Scholar
  14. 14.
    Junkes, J.A., Dermeik, B., Gutbrod, B., Hotza, D., Greil, P., Travitzky, N.: Influence of coatings on microstructure and mechanical properties of preceramic paper-derived porous alumina substrates. J. Mater. Process. Technol. 213, 308–313 (2013)CrossRefGoogle Scholar
  15. 15.
    Ali, M.S., Ariff, A.H.M., Jaafar, C.N.A., Tahir, S.M., Mazlan, N., Maori, K.A., et al.: Factors affecting the porosity and mechanical properties of porous ceramic composite materials. In: Reference module in materials science and materials engineering, ed: Elsevier (2017)Google Scholar
  16. 16.
    Clegg, R.E., Paterson, G.: Ductile particle toughening of hydroxyapatite ceramics using platinum particles. In: Structural integrity and fracture international conference (SIF‘04). 47–53 (2004)Google Scholar
  17. 17.
    Wang, S.R., Geng, H.R., Hui, L.H., Wang, Y.Z.: Reticulated porous multiphase ceramics with improved compressive strength and fracture toughness. J. Mater. Eng. Perform. 16, 113–118 (2007)CrossRefGoogle Scholar
  18. 18.
    Falamaki, C., Aghaei, A., Ardestani, N.R.: RBAO membranes/catalyst supports with enhanced permeability. J. Eur. Ceram. Soc. 21(12), 2267–2274 (2001)Google Scholar
  19. 19.
    Wu, J.M., Zhang, X.Y., Xu, J., Gan, K., Li, J.L., Li, C.-H., et al.: Preparation of porous Si3N4 ceramics via tailoring solid loading of Si3N4 slurry and Si3N4 poly-hollow microsphere content. J. Adv. Ceram. 4, 260–266 (2015)CrossRefGoogle Scholar
  20. 20.
    Sengphet, K., Pasomsouk, K., Sato, T., Fauzi, M.A., Radzali, O., Pinang, S.P.: Fabrication of porous clay ceramics using kenaf powder waste. Int. J. Sci. Res. Publ. 3, (2013)Google Scholar
  21. 21.
    Nkayem, D.N., Mbey, J., Diffo, B.K., Njopwouo, D.: Preliminary study on the use of corn cob as pore forming agent in lightweight clay bricks: physical and mechanical features. J. Build. Eng. 5, 254–259 (2016)CrossRefGoogle Scholar
  22. 22.
    Sooksaen, P., Suttiruengwong, S., Oniem, K., Ngamlamiad, K., Atireklapwarodom, J.: Fabrication of porous bioactive glass-ceramics via decomposition of natural fibres. J. Met. Mater. Miner. 18, 85–91 (2008)Google Scholar
  23. 23.
    Ali, M.S., Azmah hanim, M.A., Tahir, S.M., Jaafar, C.N.A., Mazlan, N., Matori, K.A.: The effect of commercial rice husk ash additives on the porosity, mechanical properties, and microstructure of alumina ceramics. Adv. Mater. Sci. Eng. 2017, 10 (2017)Google Scholar
  24. 24.
    Mohanta, K., Kumar, A., Parkash, O., Kumar, D.: Processing and properties of low cost macroporous alumina ceramics with tailored porosity and pore size fabricated using rice husk and sucrose. J. Eur. Ceram. Soc. 34, 2401–2412 (2014)CrossRefGoogle Scholar
  25. 25.
    Soltani, N., Bahrami, A., Pech-Canul, M., González, L.: Review on the physicochemical treatments of rice husk for production of advanced materials. Chem. Eng. J. 264, 899–935 (2015)CrossRefGoogle Scholar
  26. 26.
    Choi, Y.-H., Kim, Y.-W., Han, I.S., Woo, S.-K.: Effect of alkaline earth metal oxide addition on flexural strength of porous mullite-bonded silicon carbide ceramics. J. Mater. Sci. 45, 6841–6844 (2010)CrossRefGoogle Scholar
  27. 27.
    Dong, Y., Hampshire, S., Zhou, J.-E., Lin, B., Ji, Z., Zhang, X., et al.: Recycling of fly ash for preparing porous mullite membrane supports with titania addition. J. Hazard. Mater. 180, 173–180 (2010)CrossRefGoogle Scholar
  28. 28.
    Park, Y., Yang, T., Yoon, S., Stevens, R., Park, H.: Mullite whiskers derived from coal fly ash. Mater. Sci. Eng. A. 454, 518–522 (2007)CrossRefGoogle Scholar
  29. 29.
    He, J., Jie, Y., Zhang, J., Yu, Y., Zhang, G.: Synthesis and characterization of red mud and rice husk ash-based geopolymer composites. Cem. Concr. Compos. 37, 108–118 (2013)CrossRefGoogle Scholar
  30. 30.
    Dittmann, J., Willenbacher, N.: Micro structural investigations and mechanical properties of macro porous ceramic materials from capillary suspensions. J. Am. Ceram. Soc. 97, 3787–3792 (2014)CrossRefGoogle Scholar
  31. 31.
    Eom, J.H., Young-Wook, K., Santosh, R.: Processing and properties of macroporous silicon carbide ceramics: a review. J. Asian Ceramic Soc. 1, 220–242 (2013)CrossRefGoogle Scholar
  32. 32.
    Ighodaro, O.L., Okoli, O.I., Zhang, M., Wang, B.: Ceramic preforms with 2D regular channels for fabrication of metal/ceramic-reinforced composites. Int. J. Appl. Ceram. Technol. 9, 421–430 (2012)CrossRefGoogle Scholar
  33. 33.
    Hu, L., Benitez, R., Basu, S., Karaman, I., Radovic, M.: Processing and characterization of porous Ti 2 AlC with controlled porosity and pore size. Acta Mater. 60, 6266–6277 (2012)CrossRefGoogle Scholar
  34. 34.
    Menchavez, R.L., Intong, L.A.S.: Red clay-based porous ceramic with pores created by yeast-based foaming technique. J. Mater. Sci. 45, 6511–6520 (2010)CrossRefGoogle Scholar
  35. 35.
    Ali, M.S., Azmah Hanim, M.A., Tahir, S.M., Jaafar, C.N.A., Norkhairunnisa, M., Matori, K.A.: Strengthening of porous alumina ceramics using (Cu) metal in nanoscale particle and graphite waste as a pore agent. J. Eng. Appl. Sci. 12, 2713–2722 (2016)Google Scholar
  36. 36.
    Dong, Z., Chen, W.: Synthesis and hardness evaluation of porous M (Cr, Co) 7 C 3–Co composites. Mater. Sci. Eng. A. 576, 52–60 (2013)CrossRefGoogle Scholar
  37. 37.
    Venkataraman, R., Das, G., Singh, S., Pathak, L., Ghosh, R., Venkataraman, B., et al.: Study on influence of porosity, pore size, spatial and topological distribution of pores on microhardness of as plasma sprayed ceramic coatings. Mater. Sci. Eng. A. 445, 269–274 (2007)CrossRefGoogle Scholar
  38. 38.
    A. s. ASTM standard C 1327–03 ASTM standard C 1327–03 standard test method for Vickers indentation hardness of advanced ceramics. (2004)Google Scholar
  39. 39.
    Täffner, U., Carle, V., Schäfer, U., Hoffmann, M.: Preparation and microstructural analysis of high-performance ceramics, In: Metallography and microstructures ed: ASM International, pp. 1057–1066 (2004)Google Scholar
  40. 40.
    Cook, S.G., Little, J.A., King, J.E.: Etching and microstructure of engineering ceramics. Mater. Charact. 34, 1–8 (1995)CrossRefGoogle Scholar
  41. 41.
    A. Standard C1161, 2005c: Standard test method for flexural strength of advanced ceramics at ambient temperature. ASTM International, West Conshohocken, 2005 ed (2005)Google Scholar
  42. 42.
    William Jr, C.D. David R.G.: Materials science and engineering. Book eight edition (Wiley), vol. chapter 12 (2010)Google Scholar
  43. 43.
    Zhu, Z., Wei, Z., Shen, J., Zhu, L., Xu, L., Zhang, Y., et al.: Fabrication and catalytic growth mechanism of mullite ceramic whiskers using molybdenum oxide as catalyst. Ceram. Int. 43, 2871–2875 (2017)CrossRefGoogle Scholar
  44. 44.
    Veljović, D., Jančić-Hajneman, R., Balać, I., Jokić, B., Putić, S., Petrović, R., et al.: The effect of the shape and size of the pores on the mechanical properties of porous HAP-based bioceramics. Ceram. Int. 37, 471–479 (2011)CrossRefGoogle Scholar
  45. 45.
    Barham, N.L., Kaplan, W.D., Rittel, D.: Static and dynamic mechanical properties of alumina reinforced with sub-micron Ni particles. Mater. Sci. Eng. A. 597, 1–9 (2014)Google Scholar
  46. 46.
    Lu, J., Gao, L., Sun, J., Gui, L., Guo, J.: Effect of nickel content on the sintering behavior, mechanical and dielectric properties of Al 2 O 3/Ni composites from coated powders. Mater. Sci. Eng. A. 293(1), 223–228 (2000)Google Scholar
  47. 47.
    Sekino, T., Nakajima, T., Niihara, K.: Mechanical and magnetic properties of nickel dispersed alumina-based nanocomposite. Mater. Lett. 29, 165–169 (1996)CrossRefGoogle Scholar
  48. 48.
    Shaw, T.M.: Model for the effect of powder packing on the driving force for liquid-phase sintering. J. Am. Ceram. Soc. 76, 664–670 (1993)CrossRefGoogle Scholar
  49. 49.
    German, R.M., Suri, P., Park, S.J.: Review: liquid phase sintering. J. Mater. Sci. 44, 1–39 (2009)CrossRefGoogle Scholar
  50. 50.
    Oh, S.T., Sando, M., Sekino, T., Niihara, K.: Processing and properties of copper dispersed alumina matrix nanocomposites. Nanostruct. Mater. 10, 267–272 (1998)CrossRefGoogle Scholar
  51. 51.
    Oh, U.C., Chung, Y.S., Kim, D.Y., Yoon, D.N.: Effect of grain growth on pore coalescence during the liquid-phase sintering of MgO-CaMgSiO4 systems. J. Am. Ceram. Soc. 71, 854–857 (1988)CrossRefGoogle Scholar
  52. 52.
    Åsbrink, S., Norrby, L.J.: A refinement of the crystal structure of copper(II) oxide with a discussion of some exceptional e.s.d.’s. Acta Crystallogr. B Struct. Crystallogr. Cryst. Chem. 26, 8–15 (1970)CrossRefGoogle Scholar
  53. 53.
    MubarakAli, D., Arunkumar, J., Pooja, P., Subramanian, G., Thajuddin, N., Alharbi, N.S.: Synthesis and characterization of biocompatibility of tenorite nanoparticles and potential property against biofilm formation. Saudi Pharm. J. 23, 421–428 (2015)CrossRefGoogle Scholar
  54. 54.
    Scott, D.A.: Copper and bronze in art: corrosion, colorants, conservation. Getty Publications, Los Angeles (2002)Google Scholar
  55. 55.
    Zhu, L., Dong, Y., Hampshire, S., Cerneaux, S., Winnubst, L.: Waste-to-resource preparation of a porous ceramic membrane support featuring elongated mullite whiskers with enhanced porosity and permeance. J. Eur. Ceram. Soc. 35(2), 711–721 (2015)Google Scholar
  56. 56.
    Bradt, R.C.: The sillimanite minerals: andalusite, kyanite, and sillimanite. In: Ceramic and glass materials, ed: Springer 41–48 (2008)Google Scholar
  57. 57.
    Carter, C.B., Norton, M.G.: Ceramic materials: science and engineering. Springer, (2007)Google Scholar
  58. 58.
    Ali, M.S., Azmah Hanima, M.A., Tahir, S.M., Jaafar, C.N.A., Norkhairunnisa, M., Matori, A.K.A.: Preparation and characterization of porous alumina ceramics using different pore agents. J. Ceram. Soc. Jpn. 125(2017), 402–412 (2017)CrossRefGoogle Scholar
  59. 59.
    Liu, Y., Zhou, J., Shen, T.: Effect of nano-metal particles on the fracture toughness of metal–ceramic composite. Mater. Des. 45, 67–71 (2013)CrossRefGoogle Scholar
  60. 60.
    Lieberthal, M., Kaplan, W.D.: Processing and properties of Al 2 O 3 nanocomposites reinforced with sub-micron Ni and NiAl 2 O 4. Mater. Sci. Eng. A. 302, 83–91 (2001)CrossRefGoogle Scholar
  61. 61.
    Kayal, N., Dey, A., Chakrabarti, O.: Synthesis of mullite bonded porous SiC ceramics by a liquid precursor infiltration method: effect of sintering temperature on material and mechanical properties. Mater. Sci. Eng. A. 556, 789–795 (2012)CrossRefGoogle Scholar
  62. 62.
    Yan, W., Li, N., Han, B.: Effects of sintering temperature on pore characterisation and strength of porous corundum-mullite ceramics. J. Ceram. Process. Res. 11, 388–391 (2010)Google Scholar
  63. 63.
    Kumar, B.M., Eom, J.H., Kim, Y.W., Song, I.H., Kim, H.D.: Effect of aluminum hydroxide content on porosity and strength of porous mullite-bonded silicon carbide ceramics. J. Ceram. Soc. Jpn. 119(1389), 367–370 (2011)Google Scholar
  64. 64.
    Zhou, J., Fan, J.-p., Sun, G.-l., Zhang, J.-y., Liu, X.-m., Zhang, D.-h., et al.: Preparation and properties of porous silicon nitride ceramics with uniform spherical pores by improved pore-forming agent method. J. Alloys Compd. 632, 655–660 (2015)CrossRefGoogle Scholar
  65. 65.
    Kawai, C.: Effect of grain size distribution on the strength of porous Si3N4 ceramics composed of elongated β-Si3N4 grains. J. Mater. Sci. 36, 5713–5717 (2001)CrossRefGoogle Scholar
  66. 66.
    Mashhadi, M., Taheri-Nassaj, E., Mashhadi, M., Sglavo, V.M.: Pressureless sintering of B 4 C–TiB 2 composites with Al additions. Ceram. Int. 37, 3229–3235 (2011)CrossRefGoogle Scholar

Copyright information

© Australian Ceramic Society 2017

Authors and Affiliations

  1. 1.Department of Mechanical and Manufacturing Engineering, Faculty of EngineeringUniversiti Putra MalaysiaSerdangMalaysia
  2. 2.Department of Agriculture Machinery & Equipment Engineering Techniques, Technical College, Al-MussaibAl-Furat Al-Awsat Technical UniversityKufaIraq
  3. 3.Department of Physics, Faculty of ScienceUniversiti Putra MalaysiaSerdangMalaysia
  4. 4.Department of Aerospace Engineering, Faculty of EngineeringUniversiti Putra MalaysiaSerdangMalaysia

Personalised recommendations