Lightweight Design worldwide

, Volume 11, Issue 1, pp 6–11 | Cite as

Epoxy resins reinforced with carbon nanotubes

  • Jan Benra
  • Stefan Forero
Cover Story Innovative Composites

Carbon nanotubes can improve the mechanical properties of CFRP materials, thereby increasing the cycles-to-failure of components. A new type of carbon nanotube equipped with elastomer side chains also significantly increases maximum bending strain and the critical stress intensity factor, as Future Carbon shows. The required process steps can already be applied on an industrial scale.

Exceptional Properties

Carbon nanotubes (CNT) possess exceptional mechanical, electrical and thermal properties. For example, their elastic modulus, also known as Young’s modulus, for tension, bending, pressure and vibration is around 1 TPa [1, 2, 3], tensile strength around 10 GPa [1], thermal conductivity around 3000 to 6000 W/mK [3, 4], and electrical conductivity around 106 S/m [5].

With regard to their chemical structure, CNTs can be seen as layers of graphene rolled into cylinders. Two-dimensional graphene consists of a layer of carbon atoms that have been sp2-hybridized and exhibit a densely...



The findings presented here came from the publicly funded projects CarboDis (Inno.CNT) and NanoPreg (AiF).


  1. [1]
    Miyagawa, H. et al.: Mechanical properties of Carbon Nanotubes and Their Polymer Nanocomposites. In: Journal of Nanoscience and Nanotechnology (2005), No. 5, pp. 1593–1615CrossRefGoogle Scholar
  2. [2]
    Wong, E. W. et al.: Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes. In: Science (1997), No. 277, pp. 1971–1975CrossRefGoogle Scholar
  3. [3]
    Rao, C. N. R.: Nanotubes. In: Chemphyschem (2001), Nr 2, pp. 78–105CrossRefGoogle Scholar
  4. [4]
    Krüger, A.: Neue Kohlenstoffmaterialien. Wiesbaden: Teubner, 2007Google Scholar
  5. [5]
    Ma, P.-C. et al: Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites. In: Composites (2010), No. A 41, pp. 1345–1367CrossRefGoogle Scholar
  6. [6]
    Iijima, S.: Helical microtubles of graphitic carbon. In: Nature (1991), No. 354, pp. 56–58CrossRefGoogle Scholar
  7. [7]
    Thostenson, E. T. et al.: Processing-structure-multi-functional property relationship in carbon nanotube/epoxy composites. In: Carbon (2006), No. 44, pp. 3022–3029CrossRefGoogle Scholar
  8. [8]
  9. [9]
    Gojny, F. H. et al.: Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content. In: Composite Science and Technology 64 (2004), pp. 2363–2371CrossRefGoogle Scholar
  10. [10]
    Gojny F. H. et al.: Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites — A comparative study. In: Composite Science and Technology 65 (2005), pp. 2300–2313CrossRefGoogle Scholar
  11. [11]
    Ganguli, S.; Aglan H.: Effect of Loading and Surface Modification of MWCNTs on the Fracture Behavior of Epoxy Nanocomposites: Journal of Reinforced Plastics and Composites 25 (2006), pp. 175–188Google Scholar
  12. [12]
    Cooper, C. A. et al.: Detachment of nanotubes from a polymer matrix. In: Applied Physics Letters 81 (2002), No. 20, pp. 3873–3875CrossRefGoogle Scholar
  13. [13]
    Lachman, N.; Wagner, H. D.: Correlation between interfacial molecular structure and mechanics in CNT/epoxy nano-composites. In: Composites A (2010), No. 41, pp. 1093–1098CrossRefGoogle Scholar
  14. [14]
    Chatterjee, S. et al.: Size and synergy effects of nanofiller hybrids including graphene nanoplatelets and carbon nanotubes in mechanical properties of epoxy composites. In: Carbon 2012, No. 50, pp. 5380–5386CrossRefGoogle Scholar
  15. [15]
    Kepple, K. L.: Improved fracture toughness of carbon fiber composite functionalized with multi walled carbon nanotubes. In: Materials Science and Engineering A (2006), No. 435-436, pp.145–149CrossRefGoogle Scholar
  16. [16]
    Lubineau, G.; Rahaman A.; A review of strategies for improving the degradation properties of laminated continuous-fiber/epoxy composites with carbon-based nanoreinforcements. In: Carbon 50 (2012), pp. 2377–2395CrossRefGoogle Scholar
  17. [17]
    Ma, P. C. et al.: Effects of silane functionalization on the properties of carbon nanotube/epoxy nanocomposites. In: Composite Science and Technology 67 (2007), pp. 2965–2972CrossRefGoogle Scholar
  18. [18]
    Ma, A. W. K. et al.: The microstructure and rheology of carbon nanotube suspensions. In: International Journal Materials Forming (2008), No. 1, pp. 75–81CrossRefGoogle Scholar
  19. [19]
    Ma, P. C. et al.: Dispersion, interfacial interaction and re-agglomeration of functionalized carbon nanotubes in epoxy composites. In: Carbon 48 (2010), pp. 1824–1834CrossRefGoogle Scholar
  20. [20]
    Yaping, Z. et al.: Functionalized effect on carbon nanotube/epoxy nano-composites. In: Materials Science and Engineering A (2006), No. 435-436, pp. 145–149Google Scholar
  21. [21]
    Yue, L. et al.: Epoxy composites with carbon nanotubes and graphene nanoplatelets — Dispersion and synergy effects. In: Carbon (2014), pp. 268–278Google Scholar
  22. [22]
    Neto A. C.; Guinea F.; Peres, N. M.: Drawing conclusions from grapheme. In: Physics World (2006), No. 19, pp. 32–37CrossRefGoogle Scholar
  23. [23]
    Pillai, S. K.; Ray, S. S.: Epoxy-based Carbon Nanotubes Reinforced Composites. In: Advances in Nanocomposites - Synthesis, Characterization and Industrial Applications (2011), No. 32, pp. 729–792Google Scholar
  24. [24]
    Sandler, J. et al.: Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties. In: Polymer (1999), No. 40, pp. 5967–5971CrossRefGoogle Scholar
  25. [25]
    Li, B. J. et al.: Correlations between Percolation Threshold, Dispersion State, and Aspect Ratio of Carbon Nanotubes. In: Advanced Functional Materials (2007), No. 17, pp. 3207–3215CrossRefGoogle Scholar
  26. [26]
    Schultz, S. et al.: High-Pressure Homogenization as a Process for Emulsion Formation. In: Chemical engineering and technology (2004), No. 27, pp. 361–368CrossRefGoogle Scholar
  27. [27]
    Azoubel, S., Magdassi, S.: The formation of carbon nanotube dispersions by high pressure homogenization and their rapid characterization by analytical centrifuge; In: Carbon (2010), No. 48, pp. 3346–3352CrossRefGoogle Scholar
  28. [28]
    Panagiotou, T. et al.: Deagglomeration and Dispersion of Carbon Nanotubes Using Microfluidizer High Shear Fluid Processors. In Nanotech (2008), No. 1, pp. 39–42Google Scholar
  29. [29]
    Zeiler, R. et al: Mit Carbon Nanotubes modifizierte Epoxidharze als Matrix in Faser-Kunststoff-Verbundwerkstoffen. In: Kunststoffe (2016), No. 2, pp. 35–39Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden 2018

Authors and Affiliations

  • Jan Benra
    • 1
  • Stefan Forero
    • 1
  1. 1.Future Carbon GmbHBayreuthGermany

Personalised recommendations