Lightweight Design worldwide

, Volume 11, Issue 1, pp 12–17 | Cite as

Single-component composites made from pure cellulose

  • Johanna M. Spörl
  • Frank Hermanutz
  • Michael R. Buchmeiser
Cover Story Innovative Composites

Single-component composites made from pure cellulose are sustainable, recyclable, and biodegradable. This enables them to overcome the recycling issues associated with conventional fiber-reinforced composites. The DITF Denkendorf have been looking into the material properties, thepotential and the challenges of this class of alternative materials.


Most fiber-reinforced plastics based on glass, carbon or natural fibers are produced using petroleum-based polymer matrices. With a production volume of 2.3 million tons p.a. in Europe, glass-fiber reinforced plastics (GFRP) used in construction and structural parts account for the largest share [1]. These materials, however, preclude the possibility of proper recycling. Since there is currently no technically viable method of fully recycling GFRP end-of-life waste (currently around 300,000 tons p.a. [2]), GFRP waste is disposed of through pyrolysis of the polymer matrix, with the residual ash having to go to landfill. In...



The authors would like to thank the Baden-Württemberg Ministry for Economy, Labor and Housing for funding research initiative 7-4332.62-DITF/73, as well as Cordenka and BASF for providing the high-strength viscose fibers and the IL.


  1. 1]
    Witten, E.: Der GFK-Markt Europa — Composites-Marktbericht, 2015Google Scholar
  2. 2]
    Yazdanbakhsh, A.; Bank, L.: A Critical Review of Research on Reuse of Mechanically Recycled FRP Production and End-of-Life Waste for Construction. In: Polymers (2014), No. 6, 1810Google Scholar
  3. 3]
    Huber, T.; Müssig, J.; Curnow, O.; Pang, S.; Bickerton, S.; Staiger, M. P.: A critical review of all-cellulose composites. In: Journal of Materials Science (2012), No. 47, 1171–1186CrossRefGoogle Scholar
  4. 4]
    Spörl, J. M.; Batti, F.; Vocht, M.-P.; Raab, R.; Müller, A.; Hermanutz, F.; Buchmeiser, M. R.: Ionic Liquid Approach Toward Manufacture and Full Recycling of All-Cellulose Composites. In: Macromolecular Materials and Engineering (2018), 1700335Google Scholar
  5. 5]
    Hermanutz, F.: Textilverstärkter Formkörper, ein Verfahren zu dessen Herstellung sowie seine Verwendung. DE 102011122560, 2013Google Scholar
  6. 6]
    Kalka, S.; Huber, T.; Steinberg, J.; Baronian, K.; Müssig, J.; Staiger, M. P.: Biodegradability of all-cellulose composite laminates. In: Composites Part A: Applied Science and Manufacturing (2014), No. 59, pp. 37–44CrossRefGoogle Scholar
  7. 7]
    Carus, M. Eder, A.; Scholz, L.: Bioverbundwerkstoffe—Naturfaserversträrkte Kunststoffe (NFK) undHolz-Polymer-Werkstoffe (WPC). F. N. R. e. V. (FNR), Gülzow, 2015, pp. 1–56Google Scholar
  8. 8]
    Schweindl, F.; Brand, C.: Himmlisch leicht. Gewichtseinsparungen am Fahrzeugdachhimmel durch naturfaserverstärkte Duroplaste. In: Kunststoffe (2016), No. 7, pp. 76–79Google Scholar
  9. 9]
    Carus, M.; Gahle, C.; Pendarovski, C.; Vogt, D.; Ortmann, S.; Grotenhermen, Breuer, F.; Schmidt, T.: Studie zur Markt- und Konkurrenzsituation bei Naturfasern und Naturfaser-Werkstoffen (Deutschland und EU) in Gülzower Fachgespräche. 26, F. N. R. e. V. (FNR), Gülzow, 2008, pp. 1–393Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden 2018

Authors and Affiliations

  • Johanna M. Spörl
    • 1
  • Frank Hermanutz
    • 1
  • Michael R. Buchmeiser
    • 1
  1. 1.German Institutes of Textile and Fiber Research (DITF)DenkendorfGermany

Personalised recommendations