Advertisement

Journal of the Indian Institute of Science

, Volume 98, Issue 2, pp 85–101 | Cite as

Advances and Applications of Rapid Electrokinetic Patterning

  • Mohamed Z. Rashed
  • Vanessa Velasco
  • Stuart J. Williams
Review Article

Abstract

The dynamic manipulation and assembly of colloids enables the advancement of analytical techniques in biotechnology and the development of self-assembled materials. Rapid electrokinetic patterning (REP) is a hybrid optoelectrokinetic technique that simultaneously uses a laser illumination and a uniform AC electric field to yield programmable, dynamic, and non-invasive manipulation of colloidal particles. Since it was introduced, the technique has been applied to microengineering and biological research fields, showing its promising capabilities as a great tool for trapping, aggregating, translating, and sorting single and multiple micro- and nanoparticles, including bacteria. To effectively leverage and enhance these applications, this review paper will highlight its versatility and capability, including REP’s principles, governing physics, different experimental setups, fabrications, applications, and future prospects.

Supplementary material

41745_2018_76_MOESM1_ESM.docx (3.9 mb)
Supplementary material 1 (DOCX 3954 kb)

References

  1. 1.
    Adams JD, Kim U, Soh HT (2008) Multitarget magnetic activated cell sorter. Proc Natl Acad Sci 105(47):18165–18170CrossRefGoogle Scholar
  2. 2.
    Allen DJ, Accolla RP, Williams SJ (2017) Isomotive dielectrophoresis for parallel analysis of individual particles. Electrophoresis 38(11):1441–1449CrossRefGoogle Scholar
  3. 3.
    Arai F, Ng C, Maruyama H, Ichikawa A, El-Shimy H, Fukuda T (2005) On chip single-cell separation and immobilization using optical tweezers and thermosensitive hydrogel. Lab Chip 5(12):1399–1403.  https://doi.org/10.1039/b502546j CrossRefGoogle Scholar
  4. 4.
    Borlido L, Azevedo A, Roque A, Aires-Barros M (2013) Magnetic separations in biotechnology. Biotechnol Adv 31(8):1374–1385CrossRefGoogle Scholar
  5. 5.
    Cetin B, Özer MB, Solmaz ME (2014) Microfluidic bio-particle manipulation for biotechnology. Biochem Eng J 92:63–82CrossRefGoogle Scholar
  6. 6.
    Cherukat P, McLaughlin JB (1994) The inertial lift on a rigid sphere in a linear shear flow field near a flat wall. J Fluid Mech 263:1–18CrossRefGoogle Scholar
  7. 7.
    Choi S, Song S, Choi C, Park J-K (2009) Microfluidic self-sorting of mammalian cells to achieve cell cycle synchrony by hydrophoresis. Anal Chem 81(5):1964–1968CrossRefGoogle Scholar
  8. 8.
    Di Carlo D (2009) Inertial microfluidics. Lab Chip 9(21):3038–3046CrossRefGoogle Scholar
  9. 9.
    Di Carlo D, Irimia D, Tompkins RG, Toner M (2007) Continuous inertial focusing, ordering, and separation of particles in microchannels. Proc Natl Acad Sci 104(48):18892–18897CrossRefGoogle Scholar
  10. 10.
    Dussaud AD, Khusid B, Acrivos A (2000) Particle segregation in suspensions subject to high-gradient ac electric fields. J Appl Phys 88(9):5463–5473CrossRefGoogle Scholar
  11. 11.
    Erickson D, Serey X, Chen Y-F, Mandal S (2011) Nanomanipulation using near field photonics. Lab Chip 11(6):995–1009.  https://doi.org/10.1039/c0lc00482k CrossRefGoogle Scholar
  12. 12.
    Ermolina I, Morgan H (2005) The electrokinetic properties of latex particles: comparison of electrophoresis and dielectrophoresis. J Colloid Interface Sci 285(1):419–428CrossRefGoogle Scholar
  13. 13.
    Evander M, Nilsson J (2012) Acoustofluidics 20: applications in acoustic trapping. Lab Chip 12(22):4667–4676CrossRefGoogle Scholar
  14. 14.
    Fagan JA, Sides PJ, Prieve DC (2005) Evidence of multiple electrohydrodynamic forces acting on a colloidal particle near an electrode due to an alternating current electric field. Langmuir 21(5):1784–1794CrossRefGoogle Scholar
  15. 15.
    Forbes TP, Forry SP (2012) Microfluidic magnetophoretic separations of immunomagnetically labeled rare mammalian cells. Lab Chip 12(8):1471–1479CrossRefGoogle Scholar
  16. 16.
    Friend J, Yeo LY (2011) Microscale acoustofluidics: microfluidics driven via acoustics and ultrasonics. Rev Mod Phys 83(2):647CrossRefGoogle Scholar
  17. 17.
    Gaš B (2009) Theory of electrophoresis: fate of one equation. Electrophoresis 30:S1CrossRefGoogle Scholar
  18. 18.
    Gong J, Wu N (2017) Electric-field assisted assembly of colloidal particles into ordered nonclose-packed arrays. Langmuir 33(23):5769–5776CrossRefGoogle Scholar
  19. 19.
    Green JV, Radisic M, Murthy SK (2009) Deterministic lateral displacement as a means to enrich large cells for tissue engineering. Anal Chem 81(21):9178–9182CrossRefGoogle Scholar
  20. 20.
    Green NG, Ramos A, Gonzalez A, Castellanos A, Morgan H (2001) Electrothermally induced fluid flow on microelectrodes. J Electrostat 53(2):71–87CrossRefGoogle Scholar
  21. 21.
    Green NG, Ramos A, González A, Castellanos A, Morgan H (2000) Electric field induced fluid flow on microelectrodes: the effect of illumination. J Phys D Appl Phys 33(2):L13CrossRefGoogle Scholar
  22. 22.
    Halas NJ, Lal S, Chang W-S, Link S, Nordlander P (2011) Plasmons in strongly coupled metallic nanostructures. Chem Rev 111(6):3913–3961CrossRefGoogle Scholar
  23. 23.
    Hayward RC, Saville DA, Aksay IA (2000) Electrophoretic assembly of colloidal crystals with optically tunable micropatterns. Nature 404:56–59CrossRefGoogle Scholar
  24. 24.
    Jamshidi A, Neale SL, Yu K, Pauzauskie PJ, Schuck PJ, Valley JK et al (2009) NanoPen: dynamic, low-power, and light-actuated patterning of nanoparticles. Nano letters 9(8):2921–2925CrossRefGoogle Scholar
  25. 25.
    Javanmard M, Emaminejad S, Gupta C, Provine J, Davis R, Howe R (2014) Depletion of cells and abundant proteins from biological samples by enhanced dielectrophoresis. Sens Actuators B Chem 193:918–924CrossRefGoogle Scholar
  26. 26.
    Jonáš A, Zemanek P (2008) Light at work: the use of optical forces for particle manipulation, sorting, and analysis. Electrophoresis 29(24):4813–4851CrossRefGoogle Scholar
  27. 27.
    Jones T (1995) Electromechanics of particles. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  28. 28.
    Kang Y, Li D, Kalams SA, Eid JE (2008) DC-Dielectrophoretic separation of biological cells by size. Biomedical microdevices 10(2):243–249CrossRefGoogle Scholar
  29. 29.
    Khor JW (2015) Optimizing electrode thickness and material for laser-induced electrothermal flow. Purdue University, West LafayetteGoogle Scholar
  30. 30.
    Khoshmanesh K, Nahavandi S, Baratchi S, Mitchell A, Kalantar-zadeh K (2011) Dielectrophoretic platforms for bio-microfluidic systems. Biosens Bioelectron 26(5):1800–1814CrossRefGoogle Scholar
  31. 31.
    Klepárník K, Boček P (2010) Electrophoresis today and tomorrow: helping biologists’ dreams come true. Bioessays 32(3):218–226CrossRefGoogle Scholar
  32. 32.
    Kumar A, Chuang H-S, Wereley ST (2010) Dynamic manipulation by light and electric fields: micrometer particles to microliter droplets. Langmuir 26(11):7656–7660CrossRefGoogle Scholar
  33. 33.
    Kumar A, Kwon J-S, Williams SJ, Green NG, Yip NK, Wereley ST (2010) Optically modulated electrokinetic manipulation and concentration of colloidal particles near an electrode surface. Langmuir 26(7):5262–5272CrossRefGoogle Scholar
  34. 34.
    Kumar A, Kwon J-S, Williams SJ, Wereley ST (2009) A novel optically driven electrokinetic technique for manipulating nanoparticles. In: Optical trapping and optical micromanipulation VI, vol 7400. International Society for Optics and Photonics, p 74000V)Google Scholar
  35. 35.
    Kumar A, Williams SJ, Chuang H-S, Green NG, Wereley ST (2011) Hybrid opto-electric manipulation in microfluidics—opportunities and challenges. Lab Chip 11(13):2135–2148CrossRefGoogle Scholar
  36. 36.
    Kumar A, Williams SJ, Wereley ST (2009) Experiments on opto-electrically generated microfluidic vortices. Microfluid Nanofluid 6(5):637CrossRefGoogle Scholar
  37. 37.
    Kuzyk A (2011) Dielectrophoresis at the nanoscale. Electrophoresis 32(17):2307–2313Google Scholar
  38. 38.
    Kwon J-S, Ravindranath SP, Kumar A, Irudayaraj J, Wereley ST (2012) Opto-electrokinetic manipulation for high-performance on-chip bioassays. Lab Chip 12(23):4955–4959CrossRefGoogle Scholar
  39. 39.
    Kwon J-S, Wereley ST (2013) Towards new methodologies for manipulation of colloidal particles in a miniaturized fluidic device: optoelectrokinetic manipulation technique. J Fluids Eng 135(2):021306CrossRefGoogle Scholar
  40. 40.
    Laurell T, Petersson F, Nilsson A (2007) Chip integrated strategies for acoustic separation and manipulation of cells and particles. Chem Soc Rev 36(3):492–506CrossRefGoogle Scholar
  41. 41.
    Lenshof A, Magnusson C, Laurell T (2012) Acoustofluidics 8: applications of acoustophoresis in continuous flow microsystems. Lab Chip 12(7):1210–1223CrossRefGoogle Scholar
  42. 42.
    Leong T, Johansson L, Juliano P, McArthur SL, Manasseh R (2013) Ultrasonic separation of particulate fluids in small and large scale systems: a review. Ind Eng Chem Res 52(47):16555–16576CrossRefGoogle Scholar
  43. 43.
    Lewpiriyawong N, Yang C, Lam YC (2008) Dielectrophoretic manipulation of particles in a modified microfluidic H filter with multi-insulating blocks. Biomicrofluidics 2(3):034105CrossRefGoogle Scholar
  44. 44.
    Li M, Li S, Cao W, Li W, Wen W, Alici G (2013) Improved concentration and separation of particles in a 3D dielectrophoretic chip integrating focusing, aligning and trapping. Microfluid Nanofluid 14(3–4):527–539CrossRefGoogle Scholar
  45. 45.
    Minden J (2007) Comparative proteomics and difference gel electrophoresis. Biotechniques 43(6):739–745CrossRefGoogle Scholar
  46. 46.
    Minoura I, Muto E (2006) Dielectric measurement of individual microtubules using the electroorientation method. Biophys J 90:3739–3748CrossRefGoogle Scholar
  47. 47.
    Mishra A, Clayton K, Velasco V, Williams SJ, Wereley ST (2016) Dynamic optoelectric trapping and deposition of multiwalled carbon nanotubes. Microsyst Nanoeng 2:16005CrossRefGoogle Scholar
  48. 48.
    Mishra A, Khor JW, Clayton KN, Williams SJ, Pan X, Kinzer-Ursem T et al (2016) Optoelectric patterning: effect of electrode material and thickness on laser-induced AC electrothermal flow. Electrophoresis 37(4):658–665CrossRefGoogle Scholar
  49. 49.
    Mizuno A, Nishioka M, Ohno Y, Dascalescu L-D (1995) Liquid microvortex generated around a laser focal point in an intense high-frequency electric field. IEEE Trans Ind Appl 31(3):464–468CrossRefGoogle Scholar
  50. 50.
    Morgan H, Hughes MP, Green NG (1999) Separation of submicron bioparticles by dielectrophoresis. Biophys J 77(1):516–525CrossRefGoogle Scholar
  51. 51.
    Morgan JT, Wood JA, Shah NM, Hughbanks ML, Russell P, Barakat AI, Murphy CJ (2012) Integration of basal topographic cues and apical shear stress in vascular endothelial cells. Biomaterials 33(16):4126–4135CrossRefGoogle Scholar
  52. 52.
    Nadal F, Argoul F, Hanusse P, Pouligny B, Ajdari A (2002) Electrically induced interactions between colloidal particles in the vicinity of a conducting plane. Phys Rev E 65(6):061409CrossRefGoogle Scholar
  53. 53.
    Neuman KC, Block SM (2004) Optical trapping. Rev Sci Instrum 75(9):2787–2809CrossRefGoogle Scholar
  54. 54.
    Nilsson J, Evander M, Hammarström B, Laurell T (2009) Review of cell and particle trapping in microfluidic systems. Anal Chim Acta 649(2):141–157CrossRefGoogle Scholar
  55. 55.
    Pamme N, Manz A (2004) On-chip free-flow magnetophoresis: continuous flow separation of magnetic particles and agglomerates. Anal Chem 76(24):7250–7256CrossRefGoogle Scholar
  56. 56.
    Pethig R (2010) Dielectrophoresis: status of the theory, technology, and applications. Biomicrofluidics 4(2):022811CrossRefGoogle Scholar
  57. 57.
    Peyman SA, Kwan EY, Margarson O, Iles A, Pamme N (2009) Diamagnetic repulsion—a versatile tool for label-free particle handling in microfluidic devices. J Chromatogr A 1216(52):9055–9062CrossRefGoogle Scholar
  58. 58.
    Pohl HA (1951) The motion and precipitation of suspensoids in divergent electric fields. J Appl Phys 22(7):869–871CrossRefGoogle Scholar
  59. 59.
    Pohl HA (1958) Some effects of nonuniform fields on dielectrics. J Appl Phys 29(8):1182–1188CrossRefGoogle Scholar
  60. 60.
    Ristenpart W, Aksay I, Saville D (2004) Assembly of colloidal aggregates by electrohydrodynamic flow: kinetic experiments and scaling analysis. Phys Rev E 69(2):021405CrossRefGoogle Scholar
  61. 61.
    Ristenpart W, Aksay I, Saville D (2007) Electrohydrodynamic flow around a colloidal particle near an electrode with an oscillating potential. J Fluid Mech 575:83–109CrossRefGoogle Scholar
  62. 62.
    Rodríguez IA, Tarn MD, Madden LA, Lutz JB, Greenman J et al (2011) Flow focussing of particles and cells based on their intrinsic properties using a simple diamagnetic repulsion setup. Lab Chip 11(7):1240–1248CrossRefGoogle Scholar
  63. 63.
    Schwarz G (1962) A theory of the low-frequency dielectric dispersion of colloidal particles in electrolyte solution. J Phys Chem 66:2636–2642CrossRefGoogle Scholar
  64. 64.
    Shi J, Huang H, Stratton Z, Huang Y, Huang TJ (2009) Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW). Lab Chip 9(23):3354–3359CrossRefGoogle Scholar
  65. 65.
    Song S, Choi S (2013) Design rules for size-based cell sorting and sheathless cell focusing by hydrophoresis. J Chromatogr A 1302:191–196CrossRefGoogle Scholar
  66. 66.
    Squires TM, Quake SR (2005) Microfluidics: fluid physics at the nanoliter scale. Rev Mod Phys 77(3):977CrossRefGoogle Scholar
  67. 67.
    Suehiro J, Hamada R, Noutomi D, Shutou M, Hara M (2003) Selective detection of viable bacteria using dielectrophoretic impedance measurement method. J Electrostat 57(2):157–168CrossRefGoogle Scholar
  68. 68.
    Suwa M, Watarai H (2011) Magnetoanalysis of micro/nanoparticles: a review. Anal Chim Acta 690(2):137–147CrossRefGoogle Scholar
  69. 69.
    Tanyeri M, Ranka M, Sittipolkul N, Schroeder CM (2011) A microfluidic-based hydrodynamic trap: design and implementation. Lab Chip 11(10):1786–1794CrossRefGoogle Scholar
  70. 70.
    Tay FE, Yu L, Pang AJ, Iliescu C (2007) Electrical and thermal characterization of a dielectrophoretic chip with 3D electrodes for cells manipulation. Electrochim Acta 52(8):2862–2868CrossRefGoogle Scholar
  71. 71.
    Thévoz P, Adams JD, Shea H, Bruus H, Soh HT (2010) Acoustophoretic synchronization of mammalian cells in microchannels. Anal Chem 82(7):3094–3098CrossRefGoogle Scholar
  72. 72.
    Vahey MD, Voldman J (2008) An equilibrium method for continuous-flow cell sorting using dielectrophoresis. Anal Chem 80(9):3135–3143CrossRefGoogle Scholar
  73. 73.
    Velasco V, Williams SJ (2013) Electrokinetic concentration, patterning, and sorting of colloids with thin film heaters. J Colloid Interface Sci 394:598–603CrossRefGoogle Scholar
  74. 74.
    Velasco V, Work AH, Williams SJ (2012) Electrokinetic concentration and patterning of colloids with a scanning laser. Electrophoresis 33(13):1931–1937CrossRefGoogle Scholar
  75. 75.
    Wang JC, Ku H-Y, Chen T-S, Chuang H-S (2017) Detection of low-abundance biomarker lipocalin 1 for diabetic retinopathy using optoelectrokinetic bead-based immunosensing. Biosens Bioelectron 89:701–709CrossRefGoogle Scholar
  76. 76.
    Wang JC, Kumar A, Williams SJ, Green NG, Kim KC, Chuang H-S (2014) An optoelectrokinetic technique for programmable particle manipulation and bead-based biosignal enhancement. Lab Chip 14(20):3958–3967CrossRefGoogle Scholar
  77. 77.
    Wang JC, Ku H-Y, Shieh D-B, Chuang H-S (2016) A bead-based fluorescence immunosensing technique enabled by the integration of Förster resonance energy transfer and optoelectrokinetic concentration. Biomicrofluidics 10(1):014113CrossRefGoogle Scholar
  78. 78.
    Williams SJ (2009) Optically induced AC electrokinetic manipulation of colloids. Doctoral dissertation in Mechanical Engineering. Purdue University, West Lafayette, Indiana, USAGoogle Scholar
  79. 79.
    Williams SJ, Kumar A, Wereley ST (2008) Electrokinetic patterning of colloidal particles with optical landscapes. Lab Chip 8(11):1879–1882CrossRefGoogle Scholar
  80. 80.
    Williams SJ, Kumar A, Green NG, Wereley ST (2009) A simple, optically induced electrokinetic method to concentrate and pattern nanoparticles. Nanoscale 1(1):133–137CrossRefGoogle Scholar
  81. 81.
    Williams SJ, Kumar A, Green NG, Wereley ST (2010) Optically induced electrokinetic concentration and sorting of colloids. J Micromech Microeng 20(1):015022CrossRefGoogle Scholar
  82. 82.
    Wood E (1987) Electrophoresis (Analytical chemistry by open learning* series): by Maureen Melvin. pp 130. * ACOL, published by John Wiley & Sons, Chichester, UK.£ 9.95 (pbk) (also available in harback at£ 28) 217–218, ISBN 0-471-91375-8. Biochem Mol Biol Educ 15:4Google Scholar
  83. 83.
    Work AH, Williams SJ (2015) Characterization of 2D colloids assembled by optically-induced electrohydrodynamics. Soft Matter 11(21):4266–4272CrossRefGoogle Scholar
  84. 84.
    Wu Z, Hjort K (2009) Microfluidic hydrodynamic cell separation: a review. Micro Nanosyst 1(3):181–192CrossRefGoogle Scholar
  85. 85.
    Xuan X, Zhu J, Church C (2010) Particle focusing in microfluidic devices. Microfluid Nanofluid 9(1):1–16CrossRefGoogle Scholar
  86. 86.
    Zhang H, Liu K-K (2008) Optical tweezers for single cells. J R Soc Interface 5(24):671–690CrossRefGoogle Scholar
  87. 87.
    Zhu J, Xuan X (2009) Dielectrophoretic focusing of particles in a microchannel constriction using DC-biased AC flectric fields. Electrophoresis 30(15):2668–2675CrossRefGoogle Scholar

Copyright information

© Indian Institute of Science 2018

Authors and Affiliations

  • Mohamed Z. Rashed
    • 1
  • Vanessa Velasco
    • 1
  • Stuart J. Williams
    • 1
  1. 1.Department of Mechanical EngineeringUniversity of LouisvilleLouisvilleUSA

Personalised recommendations