Journal of the Indian Institute of Science

, Volume 98, Issue 4, pp 401–415 | Cite as

Recurrent Lamprophyre Magmatism in the Narmada Rift Zone: Petrographic and Mineral Chemistry Evidence from Xenoliths in the Eocene Dongargaon Lamprophyre, NW Deccan Large Igneous Province, India

  • Rohit Pandey
  • Samarendra Sahoo
  • Dinesh Pandit
  • Mayuri Pandey
  • NV Chalapathi RaoEmail author
Review Article


We report rare occurrence of lamprophyre xenoliths within a host lamprophyre from the Dongargaon area, Deccan Large Igneous Province, NW India. The lamprophyre xenoliths are distinct in texture (grain size) as well in mineralogy from those of their host rock. The clinopyroxene (diopside) in the xenoliths is depleted in Ca and Mg but substantially enriched in Fe compared to those in the host lamprophyre. Mica in the xenoliths is a phlogopite whereas that present in the host rock is compositionally a biotite; spinels in the host lamprophyre are relatively enriched in TiO2. As the host lamprophyre dyke has been dated to be of Eocene (ca. 55 Ma) age, the entrained lamprophyre xenoliths are inferred to represent an earlier pulse of lamprophyre emplacement. The recurrent lamprophyre emplacement in this domain is consistent with the recently brought out polychronous nature of Late Cretaceous alkaline magmatism at the Mundwara and Sarnu Dandali complexes in the NW India and is related to the extensional events linked with the reactivation of the Narmada rift zone.


Lamprophyre Petrography Mineralogy Deccan Large Igneous Province India 



The Head, Department of Geology, BHU, Varanasi is thanked for extending the facilities. DST-SERB, New Delhi is thanked for sanctioning a major research project (IR/S4/ESF-18/2011 dated 12.11.2013) to NVCR. CSIR and UGC are acknowledged for awarding JRF to RP and SS, respectively. We thank M. Santosh for extending invitation to contribute to this special issue. Comments of two anonymous journal reviewers are deeply appreciated.


  1. 1.
    Subba Rao S (1971) Alkaline rocks of the Deccan Traps. Bull Volcanol 35:998–1011CrossRefGoogle Scholar
  2. 2.
    Bose MK (1980) Alkaline magmatism in the Deccan Province. J Geol Soc India 21:317–329Google Scholar
  3. 3.
    Sethna SF (1989) Petrology and geochemistry of the acid, intermediate and alkaline rocks associated with the Deccan basalts in Gujarat and Maharashtra. Memoirs Geol Soc India 15:47–62Google Scholar
  4. 4.
    Gwalani LG, Rock NMS, Chang WJ, Fernandez S, Allegre CJ, Prinzhofer A (1993) Alkaline rocks and carbonatites of Amba Dongar and adjacent areas, Deccan Igneous Province, Gujarat, India: 1. Geology, petrography and petrochemistry. Miner Petrol 47:219–253CrossRefGoogle Scholar
  5. 5.
    Melluso L, Sethna SF, D’Antonio M, Javeri P, Bennio L (2002) Geochemistry and petrogenesis of sodic and potassic mafic alkaline rocks in the Deccan Volcanic Province, Mumbai area (India). Miner. Petrol 74:323–342CrossRefGoogle Scholar
  6. 6.
    Chalapathi Rao NV, Lehmann B (2011) Kimberlites, flood basalts and mantle plumes: new insights from the Deccan Large Igneous Province. Earth Sci Rev 107:315–324CrossRefGoogle Scholar
  7. 7.
    Dhote PS, Das S, Pathak M, Verma D (2013) Specialised thematic mapping in the Deccan volcanic province, Baroda district, south-eastern Gujarat. Geological Survey of India, Open Report for field season 2012-13 (Item No-13; Code No. 2012-13/STM/WR/GUJ/2012/007), vol 219Google Scholar
  8. 8.
    Dessai AG, Viegas A (2010) Petrogenesis of alkaline rocks from Murud-Janjira, in the Deccan Traps, Western India. Miner Petrol 98:297–311CrossRefGoogle Scholar
  9. 9.
    Chalapathi Rao NV, Dharma Rao CV, Das S (2012) Petrogenesis of lamprophyres from Chhota Udepur area, Narmada rift zone, and its relation to Deccan magmatism. J Asian Earth Sciences 45:24–39CrossRefGoogle Scholar
  10. 10.
    Rock NMS (1991) Lamprophyres. Blackie and Sons Ltd., Glasgow, p 287Google Scholar
  11. 11.
    Tappe S, Foley SF, Jenner GA, Heaman LM, Kjarsgaard BA, Romer RL, Stracke A, Joyce N, Hoefs J (2006) Genesis of ultramafic lamprophyres and carbonatites at Aillik Bay, Labrador: a consequence of incipient lithospheric thinning beneath the North Atlantic craton. J Petrol 47:1261–1315CrossRefGoogle Scholar
  12. 12.
    Ulrych J, Adamovič J, Krmíček L, Ackerman L, Balogh K (2014) Revision of Scheumann’s classification of melilitic lamprophyres and related melilitic rocks in light of new analytical data. J Geosci 59(1):3–22CrossRefGoogle Scholar
  13. 13.
    Xiong FH, Ma CQ, Jiang HA, Liu B, Zhang JY, Zhou Q (2013) Petrogenetic and tectonic significance of Permian calc-alkaline lamprophyres, East Kunlun orogenic belt, Northern Qinghai-Tibet Plateau. Int Geol Rev 55:1817–1834CrossRefGoogle Scholar
  14. 14.
    Karsli O, Dokuz A, Kaliwoda M, Uysal Y, Aydin F, Kandemir R, Fehr KT (2014) Petrology and mineralogy of the La Peña igneous complex, Mendoza, Argentina: an alkaline occurrence in the Miocene magmatism of the Southern Central Andes. Lithos 196–197:181–197CrossRefGoogle Scholar
  15. 15.
    Garza AO, Dostal J, Keppie JD, Moreno FAP (2013) Mid-Tertiary (25–21 Ma) lamprophyres in NW Mexico derived from subduction-modified subcontinental lithospheric mantle in an extensional back-arc environment following steepening of the Benioff zone. Tectonophysics 590:59–71CrossRefGoogle Scholar
  16. 16.
    Woodard J, Kietavainen R, Eklund O (2014) Svecofennian post-collisional shoshonitic lamprophyres at the margin of the Karelia Craton: implications for mantle metasomatism. Lithos 205:379–393CrossRefGoogle Scholar
  17. 17.
    Pandey A, Chalapathi Rao NV, Pandit D, Pankaj P, Pandey R, Sahoo S, Kumar A (2017) Subduction—tectonics in the evolution of the eastern Dharwar craton, southern India: insights from the post-collisional calc-alkaline lamprophyres at the western margin of the Cuddapah basin. Precamb Res 298:235–251CrossRefGoogle Scholar
  18. 18.
    Guo F, Fan W, Wang Y, Zhang M (2004) Origin of early Cretaceous calc-alkaline lamprophyres from the Sulu orogen in eastern China: implications for enrichment processes beneath continental collisional belt. Lithos 78:291–305CrossRefGoogle Scholar
  19. 19.
    Krmíček L, Romer RL, Ulrych J, Glodny J, Prelević D (2016) Petrogenesis of orogenic lamproites of the Bohemian Massif: Sr–Nd–Pb–Li isotope constraints for Variscan enrichment of ultra-depleted mantle domains. Gondwana Res 35:198–216CrossRefGoogle Scholar
  20. 20.
    Randive KK, Sahu MK, Lanjewar S, Belyatsky B (2012) Eocene (~ 55 Ma) Age for the Lamprophyre Dyke of Chota Udaipur Cabonatite-Alkaline Subprovince, Lower Narmada Valley, Gujarat and Madhya Pradesh States, India. In: Proceedings of the 10th International Kimberlite Conference, Bangalore, India, Short AbstractsGoogle Scholar
  21. 21.
    Sukheswala RN, Sethna SF (1967) Giant pseudoleucites of Ghori, Chhota Udaipur. Amer Miner 52:1904–1910Google Scholar
  22. 22.
    Durgadhmath MB (1984) Lamprophyre dykes from Phenai-Mata area Baroda district, Gujrat. Spec Publ, Geol Surv India 12:3–6Google Scholar
  23. 23.
    Chawade MP (1996) The petrology and geochemistry of dykes in Deccan basalts in parts of lower Narmada valley, around Chhaktala, Jhabua district, MP. Gondwana Geol Soc Nagpur-Spec 2:185–200Google Scholar
  24. 24.
    Hari KR (1998) Mineralogical and petrochemical studies of the lamprophyres around Chhaktalao area, Madhya Pradesh. J Geol Soc India 51:21–30Google Scholar
  25. 25.
    Hari KR, Chalapathi Rao NV, Swarnkar V, Hou G (2014) Alkali feldspar syenites with shoshonitic affinities from Chhotaudepur area: implication for mantle metasomatism in the Deccan large igneous province. Geosci Front 5:261–276CrossRefGoogle Scholar
  26. 26.
    Singh B, Rao MRKP, Prajapati SK, Swarnapriya C (2014) Combined gravity and magnetic modeling over Pavagadh and Phenaimata igneous complexes, Gujarat, India: inference on emplacement history of Deccan volcanism. J Asian Earth Sci 80:19–133CrossRefGoogle Scholar
  27. 27.
    Pandey R, Chalapathi Rao NV, Pandit D, Sahoo S, Dhote P (2018) Imprints of modal metasomatism in the post-Deccan subcontinental lithospheric mantle: petrological evidence from an ultramafic xenolith in an Eocene lamprophyre, NW India. Geol Soc London Spec Publ 463:117–136CrossRefGoogle Scholar
  28. 28.
    Putirka KD (2008) Thermometers and barometers for volcanic systems. In: Putirka KD, Tepley F (eds) Reviews in Mineralogy and Geochemistry 69:61–120Google Scholar
  29. 29.
    Ishii T (1979) Pyroxene geothermometry applied to a three-pyroxene achondrite from Allan Hills Antractica and ordinary chondrites. Miner J 8:460–481CrossRefGoogle Scholar
  30. 30.
    Larsen LM, Rex DC (1992) A review of the 2500 Ma span o falkaline-ultramafic, potassic and carbonatitic magmatism in West Greenland. Lithos 28:367–402CrossRefGoogle Scholar
  31. 31.
    Thorpe RS, Gaskarth JW, Henny PJ (1993) Composite ordovician lamprophyre (spessartite) intrusions around the Midlands Microcraton in Britain. Geol Mag 130:657–663CrossRefGoogle Scholar
  32. 32.
    Miranda R, Valadares V, Terrinha P, Mata J, Azevedo MDR, Gaspar M, Kullberg JC, Ribeiro C (2009) Age constrains on the late cretaceous alkaline magmatism on the Western Iberian margin. Cretac Res 30:575–586CrossRefGoogle Scholar
  33. 33.
    Esteve S, Enrique P, Galan G (2014) The camptonites in the multiple intrusion of Platja Fonda (Girona, NE Spain): mechanisms of intrusion and geochemistry. J Geosci 59:23–40CrossRefGoogle Scholar
  34. 34.
    Griffin WL, Begg GC, Dunn D, O’Reilly SY, Natapov LM, Karlstrom K (2011) Archean lithospheric mantle beneath arkansas: continental growth by microcontinent accretion. Geol Soc Am Bull 123:1763–1775CrossRefGoogle Scholar
  35. 35.
    Belousova E, Griffin WL, Shee SR, Jackson SE, O’Reilly SY (2001) Two age populations of zircons from the timber creek kimberlites, Northern Territories, as determined by laser-ablation ICP-MS analysis. Aust J Earth Sci 48:757–765CrossRefGoogle Scholar
  36. 36.
    Tretiakova IG, Belousova EA, Malkovets VG, Griffin WL, Piazolo S, Pearson NJ, O’Reilly SY, Nishido H (2007) Recurrent magmatic activity on a lithosphere-scale structure: crystallization and deformation in kimberlitic zircons. Gondw Res 42:126–132CrossRefGoogle Scholar
  37. 37.
    Chalapathi Rao NV, Dongre A, Wu FY, Lehmann B (2016) A late cretaceous (ca. 90 Ma) kimberlite event in southern India: implication for sub-continental lithospheric mantle evolution and diamond exploration. Gondw Res 35:378–389CrossRefGoogle Scholar
  38. 38.
    Pande K, Cucciniello C, Sheth HC, Vijayan HA (2016) Polychronous (early cretaceous to palaeogene) emplacement of the Mundwara alkaline complex, Rajasthan, India: 40Ar/39Ar geochronology, petrochemistry and geodynamics. Int J Earth Sci (GeolRundsch) 106:1487–1504CrossRefGoogle Scholar
  39. 39.
    Sheth HC, Pande K, Vijayan A, Sharma KK, Cucciniello C (2017) Recurrent early cretaceous, Indo-Madagascar (89–86 Ma) and Deccan (66 Ma) alkaline magmatism in the Sarnu-Dandali complex, Rajasthan: 40Ar/39Ar age evidence and geodynamic significance. Lithos 284–285:512–524CrossRefGoogle Scholar
  40. 40.
    Sykes LR (1978) Intraplate seismicity, reactivation of preexisting zones of weakness, alkaline magmatism, and other tectonism postdating continental fragmentation. Rev Geophys Space Phys 16:621–688CrossRefGoogle Scholar
  41. 41.
    Barnes SJ, Roeder PL (2001) The range of spinel compositions in terrestrial mafic and ultramafic rocks. J Petrol 42:2279–2302CrossRefGoogle Scholar
  42. 42.
    Mitchell RH (1995) Kimberlites, orangeites and related rocks. Plenum Press, New York, p 410CrossRefGoogle Scholar
  43. 43.
    Reider M, Cavazzini D, Yakonov YSD, Frank-Kamenetskii VA, Gottardi G, Guggenheim S, Koval PV, Muller G, Neiva AMR, Radoslovich EW, Robert JL, Sassi FP, Takeda H, Weiss Z, Wones DR (1998) Nomenclature of micas. Can Mineral 36:905–912Google Scholar
  44. 44.
    Morimoto N, Fabries J, Ferguson AK IV, Ginzburg M Ross, Seifert FA, Zussmann J, Aoki K, Gottardi G (1988) Nomenclature of pyroxenes. Am Miner 73:1123–1133Google Scholar

Copyright information

© Indian Institute of Science 2018

Authors and Affiliations

  • Rohit Pandey
    • 1
  • Samarendra Sahoo
    • 1
  • Dinesh Pandit
    • 1
  • Mayuri Pandey
    • 1
  • NV Chalapathi Rao
    • 1
    Email author
  1. 1.Deep Mantle Petrology Laboratory, Department of GeologyBanaras Hindu UniversityVaranasiIndia

Personalised recommendations