Journal of the Indian Institute of Science

, Volume 98, Issue 1, pp 69–79 | Cite as

Immunoengineering with Supramolecular Peptide Biomaterials

  • Jugal Kishore Sahoo
  • Adam S. Braegelman
  • Matthew J. Webber
Review Article


The versatility of supramolecular design in creating biomaterials and drug delivery devices for applications in medicine has gained considerable traction in recent years. The design of peptide-based self-assembling materials is one example of a highly useful and biomimetic approach to the generation of supramolecular biomaterials. One exciting area where designed supramolecular biomaterials created from peptides have demonstrated promise is in the field of immunoengineering. Specifically, peptide-based biomaterials have been used in several different contexts to modify the host immune system through the controlled release of active signaling proteins, pharmaceutical agents, or gasotransmitters. In a separate approach, this class of materials has emerged as a powerful immune-modulating strategy that can enlist the adaptive immune system in mounting a cellular or humoral immune response to a presented epitope or antigen. The ease with which these materials are synthesized, their alignment with injection-based procedures, their low toxicity, and their rapid biodegradation make these useful materials for application in immunoengineering.



MJW acknowledges funding support from the University of Notre Dame through the ‘Advancing our Vision’ initiative. We also acknowledge funding support from the Harper Cancer Institute—American Cancer Society Institutional Research Grant (IRG-14-195-01).


  1. 1.
    Aida T, Meijer EW, Stupp SI (2012) Functional supramolecular polymers. Science 335:813–817CrossRefGoogle Scholar
  2. 2.
    Webber MJ, Appel EA, Meijer EW, Langer R (2016) Supramolecular biomaterials. Nat Mater 15:13–26CrossRefGoogle Scholar
  3. 3.
    Sahoo JK, VandenBerg MA, Webber MJ (2017) Injectable network biomaterials via molecular or colloidal self-assembly. Adv Drug Deliv Rev. Google Scholar
  4. 4.
    Zhou J, Li J, Du X, Xu B (2017) Supramolecular biofunctional materials. Biomaterials 129:1–27CrossRefGoogle Scholar
  5. 5.
    Webber MJ, Langer R (2017) Drug delivery by supramolecular design. Chem Soc Rev. Google Scholar
  6. 6.
    Webber MJ (2016) Engineering responsive supramolecular biomaterials: toward smart therapeutics. Bioeng Transl Med 1:252–266Google Scholar
  7. 7.
    Barrow SJ, Kasera S, Rowland MJ, del Barrio J, Scherman OA (2015) Cucurbituril-based molecular recognition. Chem Rev 115:12320–12406CrossRefGoogle Scholar
  8. 8.
    Hu Q-D, Tang G-P, Chu PK (2014) Cyclodextrin-based host-guest supramolecular nanoparticles for delivery: from design to applications. Acc Chem Res 47:2017–2025CrossRefGoogle Scholar
  9. 9.
    Appel EA, del Barrio J, Loh XJ, Scherman OA (2012) Supramolecular polymeric hydrogels. Chem Soc Rev 41:6195–6214CrossRefGoogle Scholar
  10. 10.
    Mozhdehi D, Ayala S, Cromwell OR, Guan Z (2014) Self-healing multiphase polymers via dynamic metal-ligand interactions. J Am Chem Soc 136:16128–16131CrossRefGoogle Scholar
  11. 11.
    Rodell CB, Mealy JE, Burdick JA (2015) Supramolecular guest-host interactions for the preparation of biomedical materials. Bioconjug Chem 26:2279–2289CrossRefGoogle Scholar
  12. 12.
    Gazit E (2007) Self-assembled peptide nanostructures: the design of molecular building blocks and their technological utilization. Chem Soc Rev 36:1263–1269CrossRefGoogle Scholar
  13. 13.
    Cui H, Webber MJ, Stupp SI (2010) Self-assembly of peptide amphiphiles: from molecules to nanostructures to biomaterials. Pept Sci 94:1–18CrossRefGoogle Scholar
  14. 14.
    Fleming S, Ulijn RV (2014) Design of nanostructures based on aromatic peptide amphiphiles. Chem Soc Rev 43:8150–8177CrossRefGoogle Scholar
  15. 15.
    Du X, Zhou J, Shi J, Xu B (2015) Supramolecular hydrogelators and hydrogels: from soft matter to molecular biomaterials. Chem Rev 115:13165–13307CrossRefGoogle Scholar
  16. 16.
    Hendricks MP, Sato K, Palmer LC, Stupp SI (2017) Supramolecular assembly of peptide amphiphiles. Acc Chem Res 50:2440–2448CrossRefGoogle Scholar
  17. 17.
    Acar H et al (2017) Self-assembling peptide-based building blocks in medical applications. Adv Drug Deliv Rev 110:65–79CrossRefGoogle Scholar
  18. 18.
    Wang J et al (2016) Trace solvent as a predominant factor to tune dipeptide self-assembly. ACS Nano 10:2138–2143CrossRefGoogle Scholar
  19. 19.
    Pappas CG et al (2015) Transient supramolecular reconfiguration of peptide nanostructures using ultrasound. Mater Horiz 2:198–202CrossRefGoogle Scholar
  20. 20.
    Draper ER, Adams DJ (2016) Photoresponsive gelators. Chem Commun 52:8196–8206CrossRefGoogle Scholar
  21. 21.
    Sahoo JK, Nalluri SKM, Javid N, Webb H, Ulijn RV (2014) Biocatalytic amide condensation and gelation controlled by light. Chem Commun 50:5462–5464CrossRefGoogle Scholar
  22. 22.
    Feng Z, Zhang T, Wang H, Xu B (2017) Supramolecular catalysis and dynamic assemblies for medicine. Chem Soc Rev. Google Scholar
  23. 23.
    Zhou J, Li J, Du X, Xu B (2017) Supramolecular biofunctional materials. Biomaterials 129:1–27CrossRefGoogle Scholar
  24. 24.
    Conte MP, Sahoo JKK, Abul-Haija YM, Lau KHA, Ulijn RV (2017) Biocatalytic self-assembly on magnetic nanoparticles. ACS Appl Mater Interfaces. Google Scholar
  25. 25.
    Zelzer M, Todd SJ, Hirst AR, McDonald TO, Ulijn RV (2012) Enzyme responsive materials: design strategies and future developments. Biomater Sci 1:11–39CrossRefGoogle Scholar
  26. 26.
    Sahoo JK et al (2017) Pathway-dependent gold nanoparticle formation by biocatalytic self-assembly. Nanoscale 9:12330–12334CrossRefGoogle Scholar
  27. 27.
    Tostanoski LH, Jewell CM (2017) Engineering self-assembled materials to study and direct immune function. Adv Drug Deliv Rev 114:60–78CrossRefGoogle Scholar
  28. 28.
    Wen Y, Collier JH (2015) Supramolecular peptide vaccines: tuning adaptive immunity. Curr Opin Immunol 35:73–79CrossRefGoogle Scholar
  29. 29.
    Eskandari S, Guerin T, Toth I, Stephenson RJ (2017) Recent advances in self-assembled peptides: implications for targeted drug delivery and vaccine engineering. Adv Drug Deliv Rev 110:169–187CrossRefGoogle Scholar
  30. 30.
    Kelly SH, Shores LS, Votaw NL, Collier JH (2017) Biomaterials strategies for generating therapeutic immune responses. Adv Drug Deliv Rev. Google Scholar
  31. 31.
    Hapel AJ, McColl SR (1996) Cytokines in immunology. In: Bittar EE, Bittar N (eds) Principles of medical biology, vol 6. Elsevier, Amsterdam, pp 151–169Google Scholar
  32. 32.
    Zhang J-M, An J (2007) Cytokines, inflammation and Pain. Int Anesthesiol Clin 45:27–37CrossRefGoogle Scholar
  33. 33.
    Bendtzen K (1988) Interleukin 1, interleukin 6 and tumor necrosis factor in infection, inflammation and immunity. Immunol Lett 19:183–192CrossRefGoogle Scholar
  34. 34.
    Medzhitov R, Janeway CA (1997) Innate immunity: impact on the adaptive immune response. Curr Opin Immunol 9:4–9CrossRefGoogle Scholar
  35. 35.
    Gelain F, Unsworth LD, Zhang S (2010) Slow and sustained release of active cytokines from self-assembling peptide scaffolds. J Control Release 145:231–239CrossRefGoogle Scholar
  36. 36.
    Yoo JW, Irvine DJ, Discher DE, Mitragotri S (2011) Bio-inspired, bioengineered and biomimetic drug delivery carriers. Nat Rev Drug Discov 10:3499CrossRefGoogle Scholar
  37. 37.
    Smith GP, Petrenko VA (1997) Phage display. Chem Rev 97:391–410CrossRefGoogle Scholar
  38. 38.
    Behanna HA, Donners JJJM, Gordon AC, Stupp SI (2005) Coassembly of amphiphiles with opposite peptide polarities into nanofibers. J Am Chem Soc 127:1193–1200CrossRefGoogle Scholar
  39. 39.
    Rajangam K et al (2006) Heparin binding nanostructures to promote growth of blood vessels. Nano Lett 6:2086–2090CrossRefGoogle Scholar
  40. 40.
    Qian Y, Matson JB (2017) Gasotransmitter delivery via self-assembling peptides: treating diseases with natural signaling gases. Adv Drug Deliv Rev 110–111:137–156CrossRefGoogle Scholar
  41. 41.
    Kapadia MR et al (2008) Nitric oxide and nanotechnology: a novel approach to inhibit neointimal hyperplasia. J Vasc Surg 47:173–182CrossRefGoogle Scholar
  42. 42.
    Gao J et al (2013) Enzyme-controllable delivery of nitric oxide from a molecular hydrogel. Chem Commun 49:9173–9175CrossRefGoogle Scholar
  43. 43.
    Yao X et al (2015) Nitric oxide releasing hydrogel enhances the therapeutic efficacy of mesenchymal stem cells for myocardial infarction. Biomaterials 60:130–140CrossRefGoogle Scholar
  44. 44.
    Kassam HA, Moreira ES, Moyer TJ, Stupp SI, Kibbe MR (2013) Prevention of neointimal hyperplasia with systemic injection of a targeted drug-eluting peptide amphiphile. J Surg Res 179:296–297CrossRefGoogle Scholar
  45. 45.
    Kushwaha M et al (2010) A nitric oxide releasing, self assembled peptide amphiphile matrix that mimics native endothelium for coating implantable cardiovascular devices. Biomaterials 31:1502–1508CrossRefGoogle Scholar
  46. 46.
    Lim D-J et al (2014) Enhanced MIN-6 beta cell survival and function on a nitric oxide-releasing peptide amphiphile nanomatrix. Int J Nanomed 9:13–21CrossRefGoogle Scholar
  47. 47.
    Matson JB, Webber MJ, Tamboli VK, Weber B, Stupp SI (2012) A peptide-based material for therapeutic carbon monoxide delivery. Soft Matter 8:6689–6692CrossRefGoogle Scholar
  48. 48.
    Carter JM, Qian Y, Foster JC, Matson JB (2015) Peptide-based hydrogen sulphide-releasing gels. Chem Commun 51:13131–13134CrossRefGoogle Scholar
  49. 49.
    Altunbas A, Lee SJ, Rajasekaran SA, Schneider JP, Pochan DJ (2011) Encapsulation of curcumin in self-assembling peptide hydrogels as injectable drug delivery vehicles. Biomaterials 32:5906–5914CrossRefGoogle Scholar
  50. 50.
    Matson JB, Stupp SI (2011) Drug release from hydrazone-containing peptide amphiphiles. Chem Commun 47:7962–7964CrossRefGoogle Scholar
  51. 51.
    Matson JB, Newcomb CJ, Bitton R, Stupp SI (2012) Nanostructure-templated control of drug release from peptide amphiphile nanofiber gels. Soft Matter 8:3586–3595CrossRefGoogle Scholar
  52. 52.
    Webber MJ, Matson JB, Tamboli VK, Stupp SI (2012) Controlled release of dexamethasone from peptide nanofiber gels to modulate inflammatory response. Biomaterials 33:6823–6832CrossRefGoogle Scholar
  53. 53.
    Li J et al (2013) The conjugation of nonsteroidal anti-inflammatory drugs (NSAID) to small peptides for generating multifunctional supramolecular nanofibers/hydrogels. Beilstein J Org Chem 9:908–917CrossRefGoogle Scholar
  54. 54.
    Chen Z et al (2017) Drug-bearing supramolecular filament hydrogels as anti-inflammatory agents. Theranostics 7:2003–2014CrossRefGoogle Scholar
  55. 55.
    Zaman M, Toth I (2013) Immunostimulation by synthetic lipopeptide-based vaccine candidates: structure-activity relationships. Front Immunol 4:318CrossRefGoogle Scholar
  56. 56.
    Luo Z et al (2017) A powerful CD8+ T-cell stimulating D-tetra-peptide hydrogel as a very promising vaccine adjuvant. Adv Mater 29:1601776CrossRefGoogle Scholar
  57. 57.
    López-Sagaseta J, Malito E, Rappuoli R, Bottomley MJ (2016) Self-assembling protein nanoparticles in the design of vaccines. Comput Struct Biotechnol J 14:58–68CrossRefGoogle Scholar
  58. 58.
    Moyer TJ, Zmolek AC, Irvine DJ (2016) Beyond antigens and adjuvants: formulating future vaccines. J Clin Invest 126:799–808CrossRefGoogle Scholar
  59. 59.
    Joshi VG, Dighe VD, Thakuria D, Malik YS, Kumar S (2013) Multiple antigenic peptide (MAP): a synthetic peptide dendrimer for diagnostic, antiviral and vaccine strategies for emerging and re-emerging viral diseases. Indian J Virol 24:312–320CrossRefGoogle Scholar
  60. 60.
    Chen J et al (2013) The use of self-adjuvanting nanofiber vaccines to elicit high-affinity B cell responses to peptide antigens without inflammation. Biomaterials 34:8776–8785CrossRefGoogle Scholar
  61. 61.
    Chesson CB et al (2014) Antigenic peptide nanofibers elicit adjuvant-free CD8+ T cell responses. Vaccine 32:1174–1180CrossRefGoogle Scholar
  62. 62.
    Heath WR, Carbone FR (2001) Cross-presentation in viral immunity and self-tolerance. Nat Rev Immunol 1:nri35100512CrossRefGoogle Scholar
  63. 63.
    McKee AS, Marrack P (2017) Old and new adjuvants. Curr Opin Immunol 47:44–51CrossRefGoogle Scholar
  64. 64.
    Bastola R et al (2017) Vaccine adjuvants: smart components to boost the immune system. Arch Pharm Res. Google Scholar
  65. 65.
    Tohumeken S et al (2017) A modular antigen presenting peptide/oligonucleotide nanostructure platform for inducing potent immune response. Adv Biosyst 1:1700015CrossRefGoogle Scholar
  66. 66.
    Rad-Malekshahi M, Lempsink L, Amidi M, Hennink WE, Mastrobattista E (2016) Biomedical applications of self-assembling peptides. Bioconjug Chem 27:3–18CrossRefGoogle Scholar
  67. 67.
    Wu Y et al (2017) A supramolecular vaccine platform based on α-helical peptide nanofibers. ACS Biomater Sci Eng. Google Scholar
  68. 68.
    Mora-Solano C et al (2017) Active immunotherapy for TNF-mediated inflammation using self-assembled peptide nanofibers. Biomaterials 149:1–11CrossRefGoogle Scholar
  69. 69.
    Sahoo JK, Nazareth C, VandenBerg M, Webber M (2017) Self-assembly of amphiphilic tripeptides with sequence-dependent nanostructure. Biomater Sci. Google Scholar
  70. 70.
    Sahoo JK, Pappas CG, Sasselli IR, Abul-Haija YM, Ulijn RV (2017) Biocatalytic self-assembly cascades. Angew Chem Int Ed 56:6828–6832CrossRefGoogle Scholar
  71. 71.
    Rudra JS, Tian YF, Jung JP, Collier JH (2010) A self-assembling peptide acting as an immune adjuvant. Proc Natl Acad Sci 107:622–627CrossRefGoogle Scholar
  72. 72.
    Hudalla GA et al (2013) A self-adjuvanting supramolecular vaccine carrying a folded protein antigen. Adv Healthcare Mater 2:1114–1119CrossRefGoogle Scholar
  73. 73.
    Liu H, Irvine DJ (2015) Guiding principles in the design of molecular bioconjugates for vaccine applications. Bioconjug Chem 26:791–801CrossRefGoogle Scholar
  74. 74.
    Andorko JI, Jewell CM (2017) Designing biomaterials with immunomodulatory properties for tissue engineering and regenerative medicine. Bioeng Transl Med 2:139–155Google Scholar
  75. 75.
    Wen Y, Waltman A, Han H, Collier JH (2016) Switching the immunogenicity of peptide assemblies using surface properties. ACS Nano 10:9274–9286CrossRefGoogle Scholar
  76. 76.
    Hotaling NA, Tang L, Irvine DJ, Babensee JE (2015) Biomaterial strategies for immunomodulation. Annu Rev Biomed Eng 17:317–349CrossRefGoogle Scholar
  77. 77.
    Newcomb CJ et al (2014) Cell death versus cell survival instructed by supramolecular cohesion of nanostructures. Nat Commun 5:3321CrossRefGoogle Scholar
  78. 78.
    Rad-Malekshahi M et al (2017) Self-assembling peptide epitopes as novel platform for anticancer vaccination. Mol Pharm 14:1482–1493CrossRefGoogle Scholar
  79. 79.
    Lin AY et al (2013) Gold nanoparticle delivery of modified cpg stimulates macrophages and inhibits tumor growth for enhanced immunotherapy. PLoS One 8:e63550CrossRefGoogle Scholar
  80. 80.
    Zhu G et al (2016) DNA–inorganic hybrid nanovaccine for cancer immunotherapy. Nanoscale 8:6684–6692CrossRefGoogle Scholar
  81. 81.
    Tostanoski LH et al (2016) Reprogramming the local lymph node microenvironment promotes tolerance that is systemic and antigen specific. Cell Rep. 16:2940–2952CrossRefGoogle Scholar

Copyright information

© Indian Institute of Science 2018

Authors and Affiliations

  • Jugal Kishore Sahoo
    • 1
  • Adam S. Braegelman
    • 1
    • 2
  • Matthew J. Webber
    • 1
    • 3
    • 4
    • 5
    • 6
    • 7
  1. 1.Department of Chemical and Biomolecular EngineeringUniversity of Notre DameNotre DameUSA
  2. 2.Bioengineering Graduate ProgramUniversity of Notre DameNotre DameUSA
  3. 3.Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameUSA
  4. 4.Harper Cancer Research InstituteUniversity of Notre DameNotre DameUSA
  5. 5.Advanced Diagnostics and TherapeuticsUniversity of Notre DameNotre DameUSA
  6. 6.Warren Family Center for Drug Discovery and DevelopmentUniversity of Notre DameNotre DameUSA
  7. 7.Center for Nanoscience and Technology (NDnano)University of Notre DameNotre DameUSA

Personalised recommendations