Advertisement

Isotherm, Kinetic and Thermodynamic Studies on the Removal of Methylene Blue Dye from Aqueous Solution Using Saw Palmetto Spent

  • Pradeep Kumar Papegowda
  • Akheel Ahmed Syed
Research paper

Abstract

In the present research work Saw palmetto spent (SPS) was used to remove Methylene blue (MB) from aqueous solution economically. SEM and FTIR Studies were made to understand the Morphological properties of the adsorbent. Various parameters of adsorption such as, initial dye concentration, contact time, pH and temperature were studied. Langmuir, Freundlich and Temkin isotherm models were used to explain the adsorption behaviour. Pseudo-first order, pseudo-second order kinetic models and Intra-particle diffusion model were used to study adsorption kinetics. The maximum adsorption capacity value (q m = 90.9 mg g−1) for Langmuir isotherm was near to the experimental value (q m = 71.00 mg g−1). Thermodynamics of adsorption was studied and the values obtained indicate that the process is endothermic and spontaneous. It is confirmed that, SPS is an efficient adsorbent for removal of MB from aqueous solution.

Keywords

Saw palmetto spent Methylene blue Biosorbent Adsorption isotherms Intra-particle diffusion 

Notes

Acknowledgements

The authors gratefully acknowledge University Grants Commission, Government of India for the award of Research Fellowship in Science for meritorious students (Pradeep Kumar P).

References

  1. Akar E, Altinisik A, Seki Y (2013) Using of activated carbon produced from spent tea leaves for the removal of malachite green from aqueous solution. Ecol Eng 52:19–27. doi: 10.1016/j.ecoleng.2012.12.032 CrossRefGoogle Scholar
  2. Aksu Z, Tatlı AI, Ozlem Tunc O (2008) A comparative adsorption/biosorption study of acid blue 161: effect of temperature on equilibrium and kinetic parameters. Chem Eng J 142:23–39. doi: 10.1016/j.cej.2007.11.005 CrossRefGoogle Scholar
  3. Amare B, Chandravanshi BS, Moges G, Megersa N (2006) Hexafluorotantalate(V)-selective coated graphite electrode based on malachite green. Anal Lett 30:457–474. doi: 10.1080/00032719708001794 CrossRefGoogle Scholar
  4. Ambrosio ST, Vilar Junior JC, da Silva CAA, Okada K, Nascimento AE, Longo RL, Campos-Takaki GM (2012) A biosorption isotherm model for the removal of reactive azo dyes by inactivated mycelia of cunninghamella elegans UCP542. Molecules 17:452–462. doi: 10.3390/molecules17010452 CrossRefGoogle Scholar
  5. Baek MH, Ijagbemi CO, Kim DS (2010a) Spectroscopic studies on the oxidative decomposition of Malachite Green using ozone. J Environ Sci Health, Part A 45:630–636. doi: 10.1080/10934521003595779 CrossRefGoogle Scholar
  6. Baek MH, Ijagbemi CO, Se-Jin O, Kim DS (2010b) Removal of malachite green from aqueous solution using degreased coffee bean. J Hazard Mater 176:820–828. doi: 10.1016/j.jhazmat.2009.11.110 (Epub 2009 Nov 27) CrossRefGoogle Scholar
  7. Bansal P, Bhullar N, Sud D (2009) Studies on photodegradation of malachite green using TiO2/ZnO photocatalyst. Desalin Water Treat 12:108–113. doi: 10.5004/dwt.2009.944 CrossRefGoogle Scholar
  8. Chen JP, Wu S, Chong KH (2003) Surface modification of a granular activated carbon by citric acid for enhancement of copper adsorption. Carbon 41:979–1986. doi: 10.1016/S0008-6223(03),00197-0 CrossRefGoogle Scholar
  9. Chowdhury S, Mishra R, Saha P, Kushwaha P (2011) Adsorption thermodynamics, kinetics and isosteric heat of adsorption of malachite green onto chemically modified rice husk. Desalination 265:159–168. doi: 10.1016/j.desal.2010.07.047 CrossRefGoogle Scholar
  10. Chu BS, Baharin BS, Che Man YB, Quek SY (2004) Separation of vitamin E from palm fatty acid distillate using silica. I. Equilibrium of batch adsorption. J Food Eng 62:97–103. doi: 10.1016/S0260-8774(03)00196-1 CrossRefGoogle Scholar
  11. Gupta VK, Suhas (2009) Application of low-cost adsorbents for dye removal: a review. J Environ Manage 90:2313–2342. doi: 10.1016/j.jenvman.2008.11.017 CrossRefGoogle Scholar
  12. Gupta N, Kushwaha AK, Chattopadhyaya MC (2016) Application of potato (Solanum tuberosum) plant wastes for the removal of methylene blue and malachite green dye from aqueous solution. Arabian J Chem 9:S707–S716. doi: 10.1016/j.arabjc.2011.07.021 CrossRefGoogle Scholar
  13. Hameed BH, Mahmoud DK, Ahmad AL (2008) Sorption of basic dye from aqueous solution by pomelo (Citrus grandis) peel in a batch system. Colloids Surf A 316:78–84. doi: 10.1016/j.colsurfa.2007.08.033 CrossRefGoogle Scholar
  14. Hassan W, Farooq U, Ahmad M et al (2013) Potential biosorbent, Haloxylon recurvum plant stems, for the removal of methylene blue dye. Arabian J Chem. doi: 10.1016/j.arabjc.2013.05.002 Google Scholar
  15. Hema M, Arivoli S (2008) Adsorption kinetics and thermodynamics of malachite green dye unto acid activated low cost carbon. J Appl Sci Environ Manage 12:43–51Google Scholar
  16. Ho YS, McKay G (1998) Sorption of dye from aqueous solution by peat. Chem Eng J 70:115–124. doi: 10.1016/S0923-0467(98),00076-1 CrossRefGoogle Scholar
  17. Jalil AA, Triwahyono S, Yaakob MR et al (2012) Utilization of bivalve shell-treated Zea mays L. (maize) husk leaf as a low-cost biosorbent for enhanced adsorption of malachite green. Bioresour Technol 120:218–224. doi: 10.1016/j.biortech.2012.06.066 CrossRefGoogle Scholar
  18. Khalfaoui A, Meniai AH, Derbal K (2012) Isotherm and kinetics study of biosorption of cationic dye onto banana peel. Energy Procedia 19:286–295. doi: 10.1016/j.egypro.2012.05.208 CrossRefGoogle Scholar
  19. Namasivayam C, Kavitha D (2002) Removal of Congo Red from water by adsorption onto activated carbon prepared from coir pith, an agricultural solid waste. Dyes Pigm 54:47–58. doi: 10.1016/S0143-7208(02)00025-6 CrossRefGoogle Scholar
  20. Nandi BK, Patel S (2013) Effects of operational parameters on the removal of brilliant green dye from aqueous solutions by electrocoagulation. Arabian J Chem. doi: 10.1016/j.arabjc.2013.11.032
  21. Natali FC, Eder CL, Isis SP, Camila VA, Betina R, Rodrigo BP, Wagner SA, Simone FPP (2011) Application of cupuassu shell as biosorbent for the removal of textile dyes from aqueous solution. J Environ Manage 92:1237–1247. doi: 10.1016/j.jenvman.2010.12.010 CrossRefGoogle Scholar
  22. Ozdes D, Gundogdu A, Duran C, Senturk HB (2010) Evaluation of adsorption characteristics of malachite greenonto almond shell (Prunus dulcis). Sep Sci Technol 45:2076–2085. doi: 10.1080/01496395.2010.504479 CrossRefGoogle Scholar
  23. Sadhukhan B, Mondal NK, Chattoraj S (2016) Optimisation using central composite design (CCD) and the desirability function for sorption of methylene blue from aqueous solution onto Lemna major. Karbala Int J Mod Sci 2:145–155. doi: 10.1016/j.kijoms.2016.03.005 CrossRefGoogle Scholar
  24. Salazar-Rabago JJ, Leyva-Ramos R, Rivera-Utrilla J et al (2016) Biosorption mechanism of methylene blue from aqueous solution onto white pine (Pinus durangensis) sawdust: effect of operating conditions. doi: 10.1016/j.serj.2016.11.009
  25. Sartape AS, Mandhare AM, Jadhav VV et al (2013) Removal of malachite green dye from aqueous solution with adsorption technique using Limonia acidissima (wood apple) shell as low cost adsorbent. Arabian J Chem. doi: 10.1016/j.arabjc.2013.12.019 Google Scholar
  26. Singh DK, Srivastava B (1999) Removal of basic dyes from aqueous solutions by chemically treated psidium guyava leaves. Indian J Environ Health 41:333–345Google Scholar
  27. Wanyonyi WC, Onyari JM, Shiundu PM (2014) Adsorption of Congo Red dye from aqueous solutions using roots of eichhornia crassipes: kinetic and equilibrium studies. Energy Procedia 50:862–869. doi: 10.1016/j.egypro.2014.06.105 CrossRefGoogle Scholar
  28. Weber WJ, Morris JC (1963) Kinetics of adsorption carbon from solutions. J Sanit Eng Div ASCE 89:31–60Google Scholar
  29. Yakout SM, Elsherif E (2010) Batch kinetics, isotherm and thermodynamic studies of adsorption of strontium from aqueous solutions onto low cost rice-straw based carbons. Carbon Sci Tech 3:144–153Google Scholar
  30. Yang P, Shi W, Wang H, Liu H (2016) Screening of freshwater fungi for decolorizing multiple synthetic dyes. Braz J Microbiol 47:828–834. doi: 10.1016/j.bjm.2016.06.010 CrossRefGoogle Scholar

Copyright information

© University of Tehran 2017

Authors and Affiliations

  1. 1.Department of Studies in ChemistryUniversity of MysoreMysuruIndia
  2. 2.University of MalayaKuala LumpurMalaysia

Personalised recommendations