Advertisement

Construction Robotics

, Volume 1, Issue 1–4, pp 3–14 | Cite as

Mobile robotic fabrication at 1:1 scale: the In situ Fabricator

System, experiences and current developments
  • Markus GiftthalerEmail author
  • Timothy Sandy
  • Kathrin Dörfler
  • Ian Brooks
  • Mark Buckingham
  • Gonzalo Rey
  • Matthias Kohler
  • Fabio Gramazio
  • Jonas Buchli
Original Paper

Abstract

This paper presents the concept of an In situ Fabricator, a mobile robot intended for on-site manufacturing, assembly and digital fabrication. We present an overview of a prototype system, its capabilities, and highlight the importance of high-performance control, estimation and planning algorithms for achieving desired construction goals. Next, we detail on two architectural application scenarios: first, building a full-size undulating brick wall, which required a number of repositioning and autonomous localisation manoeuvres. Second, the mesh mould concrete process, which shows that an In situ Fabricator in combination with an innovative digital fabrication tool can be used to enable completely novel building technologies. Subsequently, important limitations of our approach are discussed. Based on that, we identify the need for a new type of robotic actuator, which facilitates the design of novel full-scale construction robots. We provide brief insight into the development of this actuator and conclude the paper with an outlook on the next-generation In situ Fabricator, which is currently under development.

Keywords

Construction robotics Digital fabrication Mobile manipulation In situ fabrication 

References

  1. Andres J, Bock T, Gebhart F (1994) First results of the development of the masonry robot system ROCCO. In: Proceedings of the 11th ISARC in Brighton (international symposium on automation and robotics in construction), pp 87–93Google Scholar
  2. Ardiny H, Witwicki SJ, Mondada F (2015) Are autonomous mobile robots able to take over construction? A review. Int J Robot 4(3):10–21Google Scholar
  3. Bonin-Font F, Ortiz A, Oliver G (2008) Visual navigation for mobile robots: a survey. J Intell Robot Syst 53(3):263–296CrossRefGoogle Scholar
  4. Bosscher P, Williams RL, Bryson LS, Castro-Lacouture D (2007) Cable-suspended robotic contour crafting system. Autom Constr 17(1):45–55CrossRefGoogle Scholar
  5. Dörfler K, Sandy T, Giftthaler M, Gramazio F, Kohler M, Buchli, J (2016) Mobile robotic brickwork—automation of a discrete robotic fabrication process using an autonomous mobile robot. In: Robotic fabrication in architecture, art and design, pp 205–217Google Scholar
  6. Eppinger S, Seering W (1986) On dynamic models of robot force control. In: IEEE international conference on robotics and automation (ICRA), vol 3, pp 29–34Google Scholar
  7. Eppinger S, Seering W (1987) Understanding bandwidth limitations in robot force control. In: IEEE international conference on robotics and automation (ICRA), vol 4, pp 904–909Google Scholar
  8. Fuentes-Pacheco J, Ruiz-Ascencio J, Rendón-Mancha JM (2015) Visual simultaneous localization and mapping: a survey. Artif Intell Rev 43:55–81CrossRefGoogle Scholar
  9. Giftthaler M, Farshidian F, Sandy T, Stadelmann L, Buchli J (2017) Efficient kinematic planning for mobile manipulators with non-holonomic constraints using optimal control. In: IEEE international conference on robotics and automation (ICRA)Google Scholar
  10. Hack N, Lauer WV, Gramazio F, Kohler M (2015) Mesh Mould: robotically fabricated metal meshes as concrete formwork and reinforcement. In: FERRO-11: proceedings of the 11th international symposium on ferrocement and 3rd ICTRC international conference on textile reinforced concrete. RILEM Publications SARL, Bagneux, pp 347–359Google Scholar
  11. Hack N, Wangler T, Mata-Falcón J, Dörfler K, Kumar N, Walzer A, Graser K, Reiter L, Richner H, Buchli J, Kaufmann W, Flatt RJ, Gramazio F, Kohler M (2017) Mesh Mould: an on site, robotically fabricated, functional formwork. In: Concrete innovation conference HPC/CIC. TromsøGoogle Scholar
  12. Helm V, Ercan S, Gramazio F, Kohler M (2012) Mobile robotic fabrication on construction sites: Dimrob. In: 2012 IEEE/RSJ international conference on intelligent robots and systems (IROS)Google Scholar
  13. Howard RD (1990) Joint and actuator design for enhanced stability in robotic force control. Ph.D. thesis, Massachusetts Institute of TechnologyGoogle Scholar
  14. Jokic S, Novikov P, Maggs S, Sadan D, Jin S, Nan C (2015) Minibuilders. In: Architectural principles, tools, and processes. Digital Vernaclar, pp 259–265Google Scholar
  15. Kalakrishnan M, Chitta S, Theodorou E, Pastor P, Schaal S (2011) Stomp: stochastic trajectory optimization for motion planning. In: IEEE international conference on robotics and automation (ICRA), pp 4569–4574Google Scholar
  16. Kalakrishnan M, Herzog A, Righetti L, Schaal S (2013) Markov random fields for stochastic trajectory optimization and learning with constraints. In: Robotics: science and systems, workshop on hierarchical and structured learning for robotics, BerlinGoogle Scholar
  17. Keating S (2016) From bacteria to buildings: additive manufacturing outside the box. Ph.D. thesis, Massachusetts Institute of TechnologyGoogle Scholar
  18. Khoshnevis B (2004) Automated construction by contour craftingrelated robotics and information technologies. Autom Constr 13(1):5–19CrossRefGoogle Scholar
  19. Kumar N, Hack N, Dörfler K, Walzer A, Rey G, Gramazio F, Kohler M, Buchli J (2017) Design, development and experimental assessment of a robotic end-effector for non-standard concrete applications. In: IEEE international conference on robotics and automation (ICRA) (submitted) Google Scholar
  20. LaValle SM (2006) Planning algorithms. Cambridge University Press, CambridgeGoogle Scholar
  21. Leutenegger S, Lynen S, Bosse M, Siegwart R, Furgale P (2015) Keyframe-based visual-inertial odometry using nonlinear optimization. Int J Robot Res 34(3):314–334CrossRefGoogle Scholar
  22. Olson E (2011) AprilTag: a robust and flexible visual fiducial system. In: Proceedings of the IEEE international conference on robotics and automation (ICRA). IEEE, pp 3400–3407Google Scholar
  23. Pritschow G, Dalacker M, Kurz J, Gaenssle M (1996) Technological aspects in the development of a mobile bricklaying robot. Autom Constr 5(1):3–13CrossRefGoogle Scholar
  24. Quigley M, Conley K, Gerkey BP, Faust J, Foote T, Leibs J, Wheeler R, Ng AY (2009) Ros: an open-source robot operating system. In: ICRA workshop on open source softwareGoogle Scholar
  25. Rhinoceros G (2016) Grasshopper Rhinoceros. http://www.grasshopper3d.com/. Accessed 06 Nov 2016 (Online)
  26. Sandy T, Giftthaler M, Dörfler K, Kohler M, Buchli J (2016) Autonomous repositioning and localization of an in situ fabricator. In: IEEE international conference on robotics and automation (ICRA), pp 2852–2858Google Scholar
  27. Sarkar N, Yun X, Kumar V (1993) Dynamic path following: a new control algorithm for mobile robots. In: Decision and control, 1993. Proceedings of the 32nd IEEE conference, vol 3, pp 2670–2675. doi: 10.1109/CDC.1993.325681
  28. Scaramuzza D, Fraundorfer F (2011) Visual odometry [tutorial]. IEEE Robot Autom Mag 18(4):80–92CrossRefGoogle Scholar
  29. Semini C, Baker M, Laxman K, Chandan V, Maruthiram T, Robert Morgan R, Frigerio M, Barasuol V, Caldwell DG, Rey G (2016) A brief overview of a novel, highly-integrated hydraulic servo actuator with additive-manufactured titanium body. In: IEEE/RSJ IROS workshop on force/torque controlled actuationGoogle Scholar
  30. Thrun S et al (2002) Robotic mapping: a survey. Exploring artificial intelligence in the new millennium, vol 1, pp 1–35Google Scholar
  31. Willmann J, Knauss M, Bonwetsch T, Apolinarska AA, Gramazio F, Kohler M (2016) Robotic timber construction expanding additive fabrication to new dimensions. Autom Constr 61:16–23CrossRefGoogle Scholar
  32. Xenomai (2016) Xenomai: real-time framework for Linux. http://www.xenomai.org. Accessed 06 Nov 2016 (Online)

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Agile & Dexterous Robotics LabETH Zürich, Institute of Robotics and Intelligent SystemsZürichSwitzerland
  2. 2.ETH Zürich, Chair of Architecture and Digital FabricationZürichSwitzerland
  3. 3.Moog Inc.BuffaloUSA
  4. 4.Renishaw PLC.GloucesterUK

Personalised recommendations