Advertisement

Understanding structure–property relation in nano-crystalline Ni–Ti shape memory alloy thin film micro-actuator

  • Geetha Priyadarshini BadhirappanEmail author
Original Article
  • 2 Downloads

Abstract

The present investigations is based on annealing heat treatment of co-sputtered Ni–Ti thin films and its effect on structure, morphology, composition, phase formations, intermetallic precipitate formation, and nano-mechanical properties. Ni–Ti thins films were co-sputtered using individual targets and subsequently annealed in vacuum at different temperatures ranging from 400 to 700 °C. The influence of annealing temperature on transformation temperatures and hardness is discussed. Efforts are made to understand the influence of heat treatment temperature on the novel characteristics of Ni–Ti shape memory alloy thin films for their prospective deployment in MEMS-based microactuators.

Keywords

Nanoindentation Ni–Ti Shape memory alloy Micro-actuators 

Notes

References

  1. Benard WL, Kahn H, Heuer AH, Huff MA (1998a) Microactuators: electrical, magnetic, thermal, optical, mechanical, chemical and smart structures. Kluwer Academic Publishers, Boston, pp 1–4Google Scholar
  2. Benard WL, Kahn H, Heuer AH, Huff MA (1998b) Thin-film shape-memory alloy actuated micropumps. J Microelectromech Syst 7:245–251CrossRefGoogle Scholar
  3. Chu JP, Lai YW, Lin TN, Wang SF (2000) Deposition and characterization of TiNi-base thin films by sputtering. Mater Sci Eng A 277:11–17CrossRefGoogle Scholar
  4. Fu Y, Du H, Huang W, Zhang S, Hu M (2004) TiNi-based thin films in MEMS applications: a review. Sens Actuators A 112:395–408CrossRefGoogle Scholar
  5. Gong FF, Shen HM, Wang YN (1996) Structures and defects induced during annealing of sputtered near-equiatomic NiTi shape memory thin films. Appl Phys Lett 69:2656–2658CrossRefGoogle Scholar
  6. Gyobu A, Kawamura Y, Horikawa H, Saburi T (1996) Martensitic transformations in sputter-deposited shape memory Ti–Ni films. Mater Trans JIM 37:697–702CrossRefGoogle Scholar
  7. Huang X, Ramirez AG (2009) Structural relaxation and crystallization of NiTi thin film metallic glasses. Appl Phys Lett 95:121911–121913CrossRefGoogle Scholar
  8. Ishida A, Sato M, Miyazaki S (1999) Mechanical properties of Ti–Ni shape memory thin films formed by sputtering. Mater Sci Eng A 273:754–757CrossRefGoogle Scholar
  9. Kabla M, Seiner H, Musilova M, Landa M, Shilo D (2014) The relationships between sputter deposition conditions, grain size, and phase transformation temperatures in NiTi thin films. Acta Mater 70:79–91CrossRefGoogle Scholar
  10. Krulevitch P, Ramsey PB, Makowiecki DM, Lee AP, Northrup MA, Johnson GC (1996) Mixed-sputter deposition of Ni–Ti–Cu shape memory films. Thin Solid Films 274:101–105CrossRefGoogle Scholar
  11. Lehnert T, Grimmer H, Boni P, Horisberger M, Gotthardt R (2000) Characterization of shape-memory alloy thin films made up from sputter-deposited Ni/Ti multilayer. Acta Mater 48:4065–4071CrossRefGoogle Scholar
  12. Liu X, Cao M, Jin W (2001) Effect of annealing temperature on transformation behaviors of Ti-50.2 at. pct Ni thin film. J Mater Sci Technol 17:40–42CrossRefGoogle Scholar
  13. Makino E, Mitsuya T, Shibata T (2000) Micromachining of NiTi shape memory thin-film for fabrication of micropump. Sens Actuators A 79:251–259CrossRefGoogle Scholar
  14. Mohanchandra KP, Ho KK, Carman GP (2004) Electrical characterization of NiTi film on silicon substrate. J Intell Mater Syst Struct 15(5):387–392CrossRefGoogle Scholar
  15. Ohta A, Bhansali S, Kishimoto I, Umeda A (2000) Novel fabrication technique of TiNi shape memory alloy film using separate Ti and Ni targets. Sens Actuators 86:165–170CrossRefGoogle Scholar
  16. Otsuka K, Ren X (2005) Physical metallurgy of Ti–Ni based shape memory alloys. Prog Mater Sci 50:511–678CrossRefGoogle Scholar
  17. Priyadarshini BG, Aich S, Chakraborty M (2016a) Nano-crystalline NiTi alloy thin films fabricated using magnetron co-sputtering from elemental targets: effect of substrate conditions. Thin Solid Films 616:733–745CrossRefGoogle Scholar
  18. Priyadarshini BG, Esakkiraja N, Aich S, Chakraborty M (2016b) Resputtering effect on nanocrystalline Ni–Ti alloy films. Metall Mater Trans A 47(4):1751–1760CrossRefGoogle Scholar
  19. Sanjabi S, Cao YZ, Sadrnezhaad SK, Barber ZH (2005) Binary and ternary NiTi-based shape memory films deposited by simultaneous sputter deposition from elemental targets. J Vac Sci Technol A 23:1425–1429CrossRefGoogle Scholar
  20. Surbled P, Clerc C, Le Pioufle B, Ataka M, Fujita H (2001) Effect of the composition and thermal annealing on the transformation temperatures of sputtered TiNi shape memory alloy thin films. Thin Solid Films 401:52–59CrossRefGoogle Scholar
  21. Waitz T, Antretter T, Fischer FD, Simha NK, Karnthaler HP (2007) Size effects on the martensitic phase transformation of NiTi nanograins. J Mech Phys Solids 55:419–444CrossRefzbMATHGoogle Scholar
  22. Wolf RH, Heuer AH (1995) TiNi (shape memory) films on silicon for MEMS applications. J Microelectromech Syst 4:206–212CrossRefGoogle Scholar
  23. Yang YQ, Jia HS, Zhang ZF, Shen HM, Hu A, Wang YN (1995) Transformations in sputter deposited thin films of NiTi shape memory alloys. Mater Lett 22:137–140CrossRefGoogle Scholar

Copyright information

© Institute of Smart Structures & Systems, Department of Aerospace Engineering, Indian Institute of Science, Bangalore 2019

Authors and Affiliations

  1. 1.Department of PhysicsPSG College of TechnologyCoimbatoreIndia
  2. 2.Nanotech Research Innovation and Incubation CenterPSG Institute of Advanced StudiesCoimbatoreIndia

Personalised recommendations