An Interactive Visualization Tool for HL7 FHIR Specification Browsing and Profiling

  • Na Hong
  • Kui Wang
  • Sizhu Wu
  • Feichen Shen
  • Lixia Yao
  • Guoqian JiangEmail author
Research Article
Part of the following topical collections:
  1. Special Issue on Healthcare Knowledge Discovery and Management


The rich semantic representation and sophisticated structure definition of the HL7 Fast Healthcare Interoperability Resources (FHIR) specification require relatively great efforts to understand and utilize. The objective of our study is to design, develop, and evaluate an open-source and user-friendly visualization interface for exploring the FHIR specification. We prototyped an interactive visualization tool for navigating and manipulating the FHIR core resources, profiles, and extensions. The utility of the tool was evaluated using evaluation metrics mainly focusing on its interactive mechanism and content expressiveness. We demonstrated that the visualization techniques are helpful for navigating the HL7 FHIR specification and aiding its profiling.


HL7 FHIR Visualization Interactive browsing Model profiling Clinical data model 


Funding Information

This study is supported in part by NIH grants U01 HG009450, the Mayo Clinic Center for Clinical and Translational Science grant (UL1TR002377), and the National Library of Medicine grant (5K01LM012102).

Compliance with Ethical Standards

Conflict of Interest

All the authors declare that there are no conflicts of interest related to this article.


  1. 1.
    Health level seven (HL7). Accessed Dec. 2017
  2. 2.
    The Observational Health Data Sciences and Informatics (OHDSI). Accessed Dec 2017
  3. 3.
    Patient-Centered Outcomes Research Institute (PCORI). Accessed Aug. 2018
  4. 4.
    Richesson RL, Krischer J (2007) Data standards in clinical research: gaps, overlaps, challenges and future directions. J Am Med Inform Assoc: JAMIA 14(6):687–696. CrossRefGoogle Scholar
  5. 5.
    Decker C (2010) The past, present, and future of clinical data standards. In: SAS Global Forum 2010 Conference. Seattle, WA, USA, p. 14Google Scholar
  6. 6.
    The HL7 Fast Healthcare Interoperability Resources (FHIR) Accessed Dec. 2017
  7. 7.
    Bender D, Sartipi K (2013) HL7 FHIR: an agile and RESTful approach to healthcare information exchange. In: Computer-Based Medical Systems (CBMS), 2013 IEEE 26th International Symposium on 2013, pp. 326–331. IEEEGoogle Scholar
  8. 8.
    (2017) FHIR: guide to resources Accessed Aug. 2017
  9. 9.
    IntermountainHealthcare: CIMI Browser. /. Accessed Dec. 2017
  10. 10.
    (2013) CEM browser user guide - clinical element models. Accessed Dec 2017
  11. 11.
    openEHR: openEHR Clinical Knowledge Manager. Accessed Dec. 2017
  12. 12.
    (2017) OpenEHR clinical information models, Clinical Knowledge Manager. Accessed Dec 2017
  13. 13.
  14. 14.
    National Cancer Institute (NCI). Accessed Dec. 2017
  15. 15.
    clinFHIR. Accessed Jan. 2018
  16. 16.
    Hay D Clinfhir wiki. Accessed Jan. 2018
  17. 17.
    Gottlieb D FHIR resource browser. Accessed Dec. 2017
  18. 18.
    firely: Forge. Accessed Dec. 2017
  19. 19.
    Solbrig HR, Hong N, Jiang G (2018) Automated population of an i2b2 clinical data warehouse using FHIR. AMIA Annu SympGoogle Scholar
  20. 20.
    Hong, N., Wang, K., Yao, L., Jiang, G. (2017) Visual FHIR: an interactive browser to navigate HL7 FHIR specification. In: Healthcare Informatics (ICHI), IEEE International Conference on 2017, pp. 26–30. IEEEGoogle Scholar
  21. 21.
    (2017) D3, Data-Driven Documents .
  22. 22.
    HAPI FHIR. Accessed Mar. 2017
  23. 23.
    D3.js Collapsible Tree. Accessed Dec. 2017
  24. 24.
    Reingold EM, Tilford JS (1981) Tidier drawings of trees. IEEE Trans Softw Eng SE-7(2):223–228CrossRefGoogle Scholar
  25. 25.
    jQuery JavaScript Library. Accessed Dec. 2017
  26. 26.
    FHIR Resource: StructureDefinition. Accessed Dec. 2017
  27. 27.
    (2017) Profiling FHIR. Accessed Dec 2017
  28. 28.
    (2017) Profiles defined as part of FHIR. Accessed Dec 2017
  29. 29.
    HAPI FHIR Profile/StructureDefinition validation. Accessed Dec. 2017
  30. 30.
    Luzzardi PR, Cava RA, Winckler, MA, Pimenta MS, Nedel LP (2002) Evaluating usability of information visualization techniques.Google Scholar
  31. 31.
    Anderson EW (2012) Evaluating scientific visualization using cognitive measures. In: the 2012 BELIV Workshop: Beyond Time and Errors-Novel Evaluation Methods for VisualizationBELIV, vol. 10.1145, p. 2442576.2442581Google Scholar
  32. 32.
    FHIR download. Accessed Dec. 2017
  33. 33.
    US core implementation guide (release 1.0.1) Accessed Dec. 2017
  34. 34.
    Sharma DK, Peterson KJ, Hong N, Jiang G (2018) The D2Refine platform for the standardization of clinical research study data dictionaries: usability study. JMIR Hum Factors 5(3):e10205. CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Na Hong
    • 1
  • Kui Wang
    • 1
  • Sizhu Wu
    • 2
  • Feichen Shen
    • 1
  • Lixia Yao
    • 1
  • Guoqian Jiang
    • 1
    Email author
  1. 1.Department of Health Sciences ResearchMayo ClinicRochesterUSA
  2. 2.Institute of Medical InformationChinese Academy of Medical SciencesBeijingChina

Personalised recommendations