Journal of Healthcare Informatics Research

, Volume 2, Issue 3, pp 272–304 | Cite as

Pattern Discovery from High-Order Drug-Drug Interaction Relations

  • Wen-Hao Chiang
  • Titus Schleyer
  • Li Shen
  • Lang Li
  • Xia NingEmail author
Research Article


Drug-drug interactions (DDIs) and associated adverse drug reactions (ADRs) represent a significant public health problem in the USA. The research presented in this manuscript tackles the problems of representing, quantifying, discovering, and visualizing patterns from high-order DDIs in a purely data-driven fashion within a unified graph-based framework and via unified convolution-based algorithms. We formulate the problem based on the notions of nondirectional DDI relations (DDI-nd’s) and directional DDI relations (DDI-d’s), and correspondingly developed weighted complete graphs and hyper-graphlets for their representation, respectively. We also develop a convolutional scheme and its stochastic algorithm \(\text {SD}^{2}\text {ID}^{2}\text {S}\) to discover DDI-based drug-drug similarities. Our experimental results demonstrate that such approaches can well capture the patterns of high-order DDIs.


Drug-drug interactions Drug-drug similarities Graph representation Convolution Stochastic algorithm 



This publication was made possible by the Lilly Endowment, Inc. Physician Scientist Initiative.

Funding information

This material is based upon work supported by the National Science Foundation under Grant Number IIS-1622526. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Compliance with Ethical Standards

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary material

41666_2018_20_MOESM1_ESM.pdf (458 kb)
(PDF 458 KB)


  1. 1.
    Aggarwal CC (2015) Data mining: the textbook. Springer, BerlinzbMATHGoogle Scholar
  2. 2.
    Al-Lazikani B, Banerji U, Workman P (2012) Combinatorial drug therapy for cancer in the post-genomic era. Nat Biotechnol 30(7):679CrossRefGoogle Scholar
  3. 3.
    Bland JM, Altman DG (2000) Statistics notes: the odds ratio. BMJ Br. Med. J. 320(7247):1468CrossRefGoogle Scholar
  4. 4.
    Burkard RE, Derigs U (1980) The linear sum assignment problem. In: Assignment and Matching Problems: Solution Methods with FORTRAN-Programs, pp 1–15. SpringerGoogle Scholar
  5. 5.
    Chatzizisis YS, Koskinas KC, Misirli G, Vaklavas C, Hatzitolios A, Giannoglou GD (2010) Risk factors and drug interactions predisposing to statin-induced myopathy: implications for risk assessment, prevention and treatment. Drug Saf 33(3):171–187. CrossRefGoogle Scholar
  6. 6.
    Cheng F, Zhao Z (2014) Machine learning-based prediction of drug–drug interactions by integrating drug phenotypic, therapeutic, chemical, and genomic properties. J Am Med Inform Assoc 21(e2):e278—e286CrossRefGoogle Scholar
  7. 7.
    Chiang CW, Zhang P, Wang X, Wang L, Zhang S, Ning X, Shen L, Quinney SK, Li L (2018) Translational high-dimensional drug interaction discovery and validation using health record databases and pharmacokinetics models. Clin. Pharmacol. Ther. 103(2):287–295CrossRefGoogle Scholar
  8. 8.
    Cook DJ, Holder LB (2006) Mining graph data. Wiley, New YorkCrossRefGoogle Scholar
  9. 9.
    Du L, Chakraborty A, Chiang CW, Cheng L, Quinney SK, Wu H, Zhang P, Li L, Shen L (2015) Graphic mining of high-order drug interactions and their directional effects on myopathy using electronic medical records. CPT Pharmacometrics Syst Pharmacol 4(8):481–488. CrossRefGoogle Scholar
  10. 10.
    Ekins S, Wrighton SA (2001) Application of in silico approaches to predicting drug–drug interactions. J Pharmacol Toxicol Methods 45(1):65–69CrossRefGoogle Scholar
  11. 11.
    Gallo G, Longo G, Pallottino S, Nguyen S (1993) Directed hypergraphs and applications. Discret Appl Math 42(2-3):177–201MathSciNetCrossRefGoogle Scholar
  12. 12.
    Golub GH, Van Loan CF (2012) Matrix computations, vol. 3. JHU Press, BaltimoreGoogle Scholar
  13. 13.
    Gottlieb A, Stein GY, Oron Y, Ruppin E, Sharan R (2012) Indi: a computational framework for inferring drug interactions and their associated recommendations. Mol Syst Biol 8(1):592CrossRefGoogle Scholar
  14. 14.
    Hammann F, Drewe J (2014) Data mining for potential adverse drug–drug interactions. Expert Opin Drug Metab Toxicol 10(5):665–671. PMID: 24588496CrossRefGoogle Scholar
  15. 15.
    Harpaz R, DuMouchel W, Shah NH, Madigan D., Ryan P, Friedman C (2012) Novel data-mining methodologies for adverse drug event discovery and analysis. Clin Pharmacol Ther 91(6):1010–1021. CrossRefGoogle Scholar
  16. 16.
    Harpaz R, Haerian K, Chase HS, Friedman C (2010) Statistical mining of potential drug interaction adverse effects in fda’s spontaneous reporting system. AMIA Annu Symp Proc 2010:281–285Google Scholar
  17. 17.
    van der Heijden PG, van Puijenbroek EP, van Buuren S, van der Hofstede JW (2002) On the assessment of adverse drug reactions from spontaneous reporting systems: the influence of under-reporting on odds ratios. Stat Med 21(14):2027–2044CrossRefGoogle Scholar
  18. 18.
    Huang J, Niu C, Green CD, Yang L, Mei H, Han JDJ (2013) Systematic prediction of pharmacodynamic drug-drug interactions through protein-protein-interaction network. PLoS Comput Biol 9(3):e1002,998CrossRefGoogle Scholar
  19. 19.
    Ibrahim H, Saad A, Abdo A, Eldin AS (2016) Mining association patterns of drug-interactions using post marketing fda’s spontaneous reporting data. J Biomed Inform 60:294–308CrossRefGoogle Scholar
  20. 20.
    Iyer SV, Harpaz R, LePendu P, Bauer-Mehren A, Shah NH (2014) Mining clinical text for signals of adverse drug-drug interactions. J Am Med Inform Assoc 21(2):353–362CrossRefGoogle Scholar
  21. 21.
    Jain AK (2010) Data clustering: 50 years beyond k-means. Pattern Recogn Lett 31(8):651–666CrossRefGoogle Scholar
  22. 22.
    Kolchinsky A, Lourenċo A, Li L, Rocha LM (2013) Evaluation of linear classifiers on articles containing pharmacokinetic evidence of drug-drug interactions. In: Biocomputing 2013: Proceedings of the Pacific Symposium, Kohala Coast, Hawaii, USA, January 3-7, 2013, pp 409–420Google Scholar
  23. 23.
    Kuhn HW (1955) The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2):83–97MathSciNetCrossRefGoogle Scholar
  24. 24.
    Li Y, Hale KJ (2007) Asymmetric total synthesis and formal total synthesis of the antitumor sesquiterpenoid (+)-eremantholide a. Org Lett 9(7):1267–1270. CrossRefGoogle Scholar
  25. 25.
    Luo H, Zhang P, Huang H, Huang J, Kao E, Shi L, He L, Yang L (2014) Ddi-cpi, a server that predicts drug–drug interactions through implementing the chemical–protein interactome. Nucleic Acids Research. CrossRefGoogle Scholar
  26. 26.
    Ning X, Schleyer T, Shen L, Li L (2017) Pattern discovery from directional high-order drug-drug interaction relations. In: 2017 IEEE International Conference on Healthcare Informatics (ICHI), pp 154–162.
  27. 27.
    Percha B, Altman RB (2013) Informatics confronts drug-drug interactions. Trends Pharmacol Sci 34(3):178–184. CrossRefGoogle Scholar
  28. 28.
    Ramirez E, Carcas AJ, Borobia AM, Lei SH, Piñana E, Fudio S, Frias J (2010) A pharmacovigilance program from laboratory signals for the detection and reporting of serious adverse drug reactions in hospitalized patients. Clin Pharmacol Ther 87(1):74–86. CrossRefGoogle Scholar
  29. 29.
    Szumilas M (2010) Explaining odds ratios. J Can Acad Child Adolesc Psychiatry 19(3):227–229CrossRefGoogle Scholar
  30. 30.
    Tatonetti NP, Denny J, Murphy S, Fernald G, Krishnan G, Castro V, Yue P, Tsau P, Kohane I, Roden D et al (2011) Detecting drug interactions from adverse-event reports: interaction between paroxetine and pravastatin increases blood glucose levels. Clin Pharmacol Ther 90(1):133–142CrossRefGoogle Scholar
  31. 31.
    Tekin E, Beppler C, White C, Mao Z, Savage VM, Yeh PJ (2016) Enhanced identification of synergistic and antagonistic emergent interactions among three or more drugs. J R Soc Interface 13(119):20160,332CrossRefGoogle Scholar
  32. 32.
    Vilar S, Friedman C, Hripcsak G (2017) Detection of drug–drug interactions through data mining studies using clinical sources, scientific literature and social media. Briefings in Bioinformatics p. bbx010Google Scholar
  33. 33.
    Vilar S, Uriarte E, Santana L, Lorberbaum T, Hripcsak G, Friedman C, Tatonetti NP (2014) Similarity-based modeling in large-scale prediction of drug-drug interactions. Nat Protoc 9(9):2147–2163CrossRefGoogle Scholar
  34. 34.
    Wang X, Zhang P, Chiang CW, Wu H, Shen L, Ning X, Zeng D, Wang L, Quinney SK, Feng W, et al. (2017) Mixture drug-count response model for the high-dimensional drug combinatory effect on myopathy. Statistics in medicineGoogle Scholar
  35. 35.
    Wienkers LC, Heath TG (2005) Predicting in vivo drug interactions from in vitro drug discovery data. Nat Rev Drug Discov 4(10):825–833CrossRefGoogle Scholar
  36. 36.
    Xiang Y, Lu K, James S, Borlawsky T, Huang K, Payne P (2012) Indexing the umls for large scale knowledge discovery in biomedical applications. AMIA Translational Bioinformatics Informatics Summit ProcGoogle Scholar
  37. 37.
    Yan S, Jiang X, Chen Y (2013) Text mining driven drug-drug interaction detection. In: 2013 IEEE international conference on bioinformatics and biomedicine (BIBM), pp 349–354. IEEEGoogle Scholar
  38. 38.
    Yang H, Yang CC (2013) Harnessing social media for drug-drug interactions detection. In: 2013 IEEE international conference on healthcare informatics (ICHI), pp 22–29. IEEEGoogle Scholar
  39. 39.
    Zhang Y, Yeung DY (2013) Learning high-order task relationships in multi-task learning. In: Proceedings of the 20rd International Joint Conference on Artificial Intelligence, IJCAI ’13, pp 1917–1923. AAAI Press.
  40. 40.
    Zhao XM, Iskar M, Zeller G, Kuhn M, Van Noort V, Bork P (2011) Prediction of drug combinations by integrating molecular and pharmacological data. PLoS Comput Biol 7(12):e1002,323CrossRefGoogle Scholar
  41. 41.
    Zhao Y, Karypis G, Fayyad U (2005) Hierarchical clustering algorithms for document datasets. Data Min Knowl Disc 10(2):141–168MathSciNetCrossRefGoogle Scholar
  42. 42.
    Zimmer A, Katzir I, Dekel E, Mayo AE, Alon U (2016) Prediction of multidimensional drug dose responses based on measurements of drug pairs. Proc Natl Acad Sci USA 113(37):10,442–10,447CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Computer & Information ScienceIndiana University - Purdue University IndianapolisIndianapolisUSA
  2. 2.Center for Biomedical InformaticsRegenstrief InstituteIndianapolisUSA
  3. 3.Department of Biostatistics, Epidemiology and InformaticsUniversity of PennsylvaniaPennsylvaniaUSA
  4. 4.Department of Biomedical InformaticsThe Ohio State UniversityColumbusUSA
  5. 5.Center for Computational Biology and BioinformaticsIndiana University School of MedicineIndianapolisUSA

Personalised recommendations