Advertisement

Microfluidic Electrochemical Devices for Biosensing

  • Noel Nesakumar
  • Srinivasan Kesavan
  • Chen-Zhong Li
  • Subbiah AlwarappanEmail author
Review
  • 18 Downloads

Abstract

The integration of the electrochemical detection system together with microfluidic technology is an attractive choice for the construction of miniaturized components in a single platform. Microchannel networks fabricated on conductive substrates prevent environmental contaminants and require only a tiny (µL or nL) sample for electroanalysis. Microfluidics coupled electrochemical detection system is particularly advantageous compared to traditional electrochemical sensing systems due to its flexibility, rapid analysis, low fabrication costs, ease of implementation and disposability. With these electrochemical sensing platforms, biochemical assays that require complex pre-processing of biological samples can be conducted on a chip. In this review, a comprehensive overview of the basic concepts of microfluidics and its recent applications in the design of miniaturized electrochemical sensors for biosensing applications are presented.

Keywords

Microfluidics Electrochemical sensor Electrode Microchannel Fabrication 

References

  1. 1.
    Materón EM, Lima RS, Joshi N, Shimizu FM, Oliveira ON. Chapter 13—graphene-containing microfluidic and chip-based sensor devices for biomolecules. In: Pandikumar A, Rameshkumar P, editors. Graphene-based electrochem. Elsevier: Oxford; 2019. p. 321–36.  https://doi.org/10.1016/B978-0-12-815394-9.00013-3.CrossRefGoogle Scholar
  2. 2.
    Liao Z, Wang J, Zhang P, Zhang Y, Miao Y, Gao S, et al. Recent advances in microfluidic chip integrated electronic biosensors for multiplexed detection. Biosens Bioelectron. 2018;121:272–80.  https://doi.org/10.1016/j.bios.2018.08.061.CrossRefPubMedGoogle Scholar
  3. 3.
    Hamzah HH, Shafiee SA, Abdalla A, Patel BA. 3D printable conductive materials for the fabrication of electrochemical sensors: a mini review. Electrochem Commun. 2018;96:27–31.  https://doi.org/10.1016/j.elecom.2018.09.006.CrossRefGoogle Scholar
  4. 4.
    Perrier R, Pirog A, Jaffredo M, Gaitan J, Catargi B, Renaud S, et al. Bioelectronic organ-based sensor for microfluidic real-time analysis of the demand in insulin. Biosens Bioelectron. 2018;117:253–9.  https://doi.org/10.1016/j.bios.2018.06.015.CrossRefPubMedGoogle Scholar
  5. 5.
    Liu Z, Jin M, Cao J, Niu R, Li P, Zhou G, et al. Electrochemical sensor integrated microfluidic device for sensitive and simultaneous quantification of dopamine and 5-hydroxytryptamine. Sens Actuators B Chem. 2018;273:873–83.  https://doi.org/10.1016/j.snb.2018.06.123.CrossRefGoogle Scholar
  6. 6.
    Lu L, Gunasekaran S. Dual-channel ITO-microfluidic electrochemical immunosensor for simultaneous detection of two mycotoxins. Talanta. 2018;1:5.  https://doi.org/10.1016/j.talanta.2018.10.091.CrossRefGoogle Scholar
  7. 7.
    Pursey JP, Chen Y, Stulz E, Park MK, Kongsuphol P. Microfluidic electrochemical multiplex detection of bladder cancer DNA markers. Sens Actuators B Chem. 2017;251:34–9.  https://doi.org/10.1016/j.snb.2017.05.006.CrossRefGoogle Scholar
  8. 8.
    Ali MA, Jiang H, Mahal NK, Weber RJ, Kumar R, Castellano MJ, et al. Microfluidic impedimetric sensor for soil nitrate detection using graphene oxide and conductive nanofibers enabled sensing interface. Sens Actuators B Chem. 2017;239:1289–99.  https://doi.org/10.1016/j.snb.2016.09.101.CrossRefGoogle Scholar
  9. 9.
    Farzbod A, Moon H. Integration of reconfigurable potentiometric electrochemical sensors into a digital microfluidic platform. Biosens Bioelectron. 2018;106:37–42.  https://doi.org/10.1016/j.bios.2018.01.048.CrossRefPubMedGoogle Scholar
  10. 10.
    Hwang D-W, Lee S, Seo M, Chung TD. Recent advances in electrochemical non-enzymatic glucose sensors—a review. Anal Chim Acta. 2018;1033:1–34.  https://doi.org/10.1016/j.aca.2018.05.051.CrossRefPubMedGoogle Scholar
  11. 11.
    Kaur G, Tomar M, Gupta V. Development of a microfluidic electrochemical biosensor: prospect for point-of-care cholesterol monitoring. Sens Actuators B Chem. 2018;261:460–6.  https://doi.org/10.1016/j.snb.2018.01.144.CrossRefGoogle Scholar
  12. 12.
    Lima HRS, da Silva JS, de Oliveira Farias EA, Teixeira PRS, Eiras C, Nunes LCC. Electrochemical sensors and biosensors for the analysis of antineoplastic drugs. Biosens Bioelectron. 2018;108:27–37.  https://doi.org/10.1016/j.bios.2018.02.034.CrossRefPubMedGoogle Scholar
  13. 13.
    Cardoso RM, Mendonça DMH, Silva WP, Silva MNT, Nossol E, da Silva RAB, et al. 3D printing for electroanalysis: from multiuse electrochemical cells to sensors. Anal Chim Acta. 2018;1033:49–57.  https://doi.org/10.1016/j.aca.2018.06.021.CrossRefPubMedGoogle Scholar
  14. 14.
    Rattanarat P, Suea-Ngam A, Ruecha N, Siangproh W, Henry CS, Srisa-Art M, et al. Graphene-polyaniline modified electrochemical droplet-based microfluidic sensor for high-throughput determination of 4-aminophenol. Anal Chim Acta. 2016;925:51–60.  https://doi.org/10.1016/j.aca.2016.03.010.CrossRefPubMedGoogle Scholar
  15. 15.
    Gu S, Lu Y, Ding Y, Li L, Song H, Wang J, et al. A droplet-based microfluidic electrochemical sensor using platinum-black microelectrode and its application in high sensitive glucose sensing. Biosens Bioelectron. 2014;55:106–12.  https://doi.org/10.1016/j.bios.2013.12.002.CrossRefPubMedGoogle Scholar
  16. 16.
    Hong SA, Kim Y-J, Kim SJ, Yang S. Electrochemical detection of methylated DNA on a microfluidic chip with nanoelectrokinetic pre-concentration. Biosens Bioelectron. 2018;107:103–10.  https://doi.org/10.1016/j.bios.2018.01.067.CrossRefPubMedGoogle Scholar
  17. 17.
    Kudr J, Zitka O, Klimanek M, Vrba R, Adam V. Microfluidic electrochemical devices for pollution analysis—a review. Sens Actuators B Chem. 2017;246:578–90.  https://doi.org/10.1016/j.snb.2017.02.052.CrossRefGoogle Scholar
  18. 18.
    Nasseri B, Soleimani N, Rabiee N, Kalbasi A, Karimi M, Hamblin MR. Point-of-care microfluidic devices for pathogen detection. Biosens Bioelectron. 2018;117:112–28.  https://doi.org/10.1016/j.bios.2018.05.050.CrossRefPubMedGoogle Scholar
  19. 19.
    Pol R, Céspedes F, Gabriel D, Baeza M. Microfluidic lab-on-a-chip platforms for environmental monitoring. Trends Anal Chem. 2017;95:62–8.  https://doi.org/10.1016/j.trac.2017.08.001.CrossRefGoogle Scholar
  20. 20.
    Xu D, Huang X, Guo J, Ma X. Automatic smartphone-based microfluidic biosensor system at the point of care. Biosens Bioelectron. 2018;110:78–88.  https://doi.org/10.1016/j.bios.2018.03.018.CrossRefPubMedGoogle Scholar
  21. 21.
    Hervás M, López MA, Escarpa A. Electrochemical immunosensing on board microfluidic chip platforms. Trends Anal Chem. 2012;31:109–28.  https://doi.org/10.1016/j.trac.2011.06.020.CrossRefGoogle Scholar
  22. 22.
    Reverté L, Prieto-Simón B, Campàs M. New advances in electrochemical biosensors for the detection of toxins: nanomaterials, magnetic beads and microfluidics systems: a review. Anal Chim Acta. 2016;908:8–21.  https://doi.org/10.1016/j.aca.2015.11.050.CrossRefPubMedGoogle Scholar
  23. 23.
    Ansari MIH, Hassan S, Qurashi A, Khanday FA. Microfluidic-integrated DNA nanobiosensors. Biosens Bioelectron. 2016;85:247–60.  https://doi.org/10.1016/j.bios.2016.05.009.CrossRefPubMedGoogle Scholar
  24. 24.
    Fu L-M, Wang Y-N. Detection methods and applications of microfluidic paper-based analytical devices. Trends Anal Chem. 2018;107:196–211.  https://doi.org/10.1016/j.trac.2018.08.018.CrossRefGoogle Scholar
  25. 25.
    Triroj N, Jaroenapibal P, Beresford R. Gas-assisted focused ion beam fabrication of gold nanoelectrode arrays in electron-beam evaporated alumina films for microfluidic electrochemical sensors. Sens Actuators B Chem. 2013;187:455–60.  https://doi.org/10.1016/j.snb.2013.01.049.CrossRefGoogle Scholar
  26. 26.
    Shiba S, Yoshioka K, Kato D, Ishihara S, Anzai H, Saito N, et al. Electrochemical microfluidic devices for evaluation of drug metabolism. J Electroanal Chem. 2016;779:86–91.  https://doi.org/10.1016/j.jelechem.2016.04.043.CrossRefGoogle Scholar
  27. 27.
    Akhtar MH, Hussain KK, Gurudatt NG, Shim Y-B. Detection of Ca2+-induced acetylcholine released from leukemic T-cells using an amperometric microfluidic sensor. Biosens Bioelectron. 2017;98:364–70.  https://doi.org/10.1016/j.bios.2017.07.003.CrossRefPubMedGoogle Scholar
  28. 28.
    Ko E, Tran V-K, Geng Y, Chung WS, Park CH, Kim MK, et al. Continuous electrochemical detection of hydrogen peroxide by Au–Ag bimetallic nanoparticles in microfluidic devices. J Electroanal Chem. 2017;792:72–8.  https://doi.org/10.1016/j.jelechem.2017.03.027.CrossRefGoogle Scholar
  29. 29.
    Watanabe T, Shibano S, Maeda H, Sugitani A, Katayama M, Matsumoto Y, et al. Fabrication of a microfluidic device with boron-doped diamond electrodes for electrochemical analysis. Electrochim Acta. 2016;197:159–66.  https://doi.org/10.1016/j.electacta.2015.11.035.CrossRefGoogle Scholar
  30. 30.
    Sharma PS, Iskierko Z, Noworyta K, Cieplak M, Borowicz P, Lisowski W, et al. Synthesis and application of a “plastic antibody” in electrochemical microfluidic platform for oxytocin determination. Biosens Bioelectron. 2018;100:251–8.  https://doi.org/10.1016/j.bios.2017.09.009.CrossRefPubMedGoogle Scholar
  31. 31.
    Cao L, Fang C, Zeng R, Zhao X, Jiang Y, Chen Z. Paper-based microfluidic devices for electrochemical immunofiltration analysis of human chorionic gonadotropin. Biosens Bioelectron. 2017;92:87–94.  https://doi.org/10.1016/j.bios.2017.02.002.CrossRefPubMedGoogle Scholar
  32. 32.
    Kim J, Elsnab J, Gehrke C, Li J, Gale BK. Microfluidic integrated multi-walled carbon nanotube (MWCNT) sensor for electrochemical nucleic acid concentration measurement. Sens Actuators B Chem. 2013;185:370–6.  https://doi.org/10.1016/j.snb.2013.05.018.CrossRefGoogle Scholar
  33. 33.
    Jiang H, Jiang D, Zhu P, Pi F, Ji J, Sun C, et al. A novel mast cell co-culture microfluidic chip for the electrochemical evaluation of food allergen. Biosens Bioelectron. 2016;83:126–33.  https://doi.org/10.1016/j.bios.2016.04.028.CrossRefPubMedGoogle Scholar
  34. 34.
    Cecchini MP, Hong J, Lim C, Choo J, Albrecht T, deMello AJ, et al. Ultrafast surface enhanced resonance raman scattering detection in droplet-based microfluidic systems. Anal Chem. 2011;83:3076–81.  https://doi.org/10.1021/ac103329b.CrossRefPubMedGoogle Scholar
  35. 35.
    Srinivasan V, Pamula VK, Fair RB. Droplet-based microfluidic lab-on-a-chip for glucose detection. Anal Chim Acta. 2004;507:145–50.  https://doi.org/10.1016/j.aca.2003.12.030.CrossRefGoogle Scholar
  36. 36.
    Han Z, Li W, Huang Y, Zheng B. Measuring rapid enzymatic kinetics by electrochemical method in droplet-based microfluidic devices with pneumatic valves. Anal Chem. 2009;81:5840–5.  https://doi.org/10.1021/ac900811y.CrossRefPubMedGoogle Scholar
  37. 37.
    Casadevall I, Solvas X, Demello A. Droplet microfluidics: recent developments and future applications. Chem Commun. 2011;47:1936–42.  https://doi.org/10.1039/c0cc02474k.CrossRefGoogle Scholar
  38. 38.
    Baker CA, Duong CT, Grimley A, Roper MG. Recent advances in microfluidic detection systems. Bioanalysis. 2009;1:967–75.  https://doi.org/10.4155/bio.09.86.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Su F, Fair RB. Microfluidics-based biochips: technology issues, implementation platforms, and design-automation challenges. IEEE Trans Comput Des Integr CIRCUITS Syst. 2006;25:1–14.  https://doi.org/10.1109/TCAD.2005.855956.CrossRefGoogle Scholar
  40. 40.
    Rackus DG, Shamsi MH, Wheeler AR. Electrochemistry, biosensors and microfluidics: a convergence of fields. Chem Soc Rev. 2015;44:5320–40.  https://doi.org/10.1039/c4cs00369a.CrossRefPubMedGoogle Scholar
  41. 41.
    Messina GA, Panini NV, Martinez NA, Raba J. Microfluidic immunosensor design for the quantification of interleukin-6 in human serum samples. Anal Biochem. 2008;380:262–7.  https://doi.org/10.1016/j.ab.2008.05.055.CrossRefPubMedGoogle Scholar
  42. 42.
    Panini NV, Messina GA, Salinas E, Fernández H, Raba J. Integrated microfluidic systems with an immunosensor modified with carbon nanotubes for detection of prostate specific antigen (PSA) in human serum samples. Biosens Bioelectron. 2008;23:1145–51.  https://doi.org/10.1016/j.bios.2007.11.003.CrossRefPubMedGoogle Scholar
  43. 43.
    Lin X, Hu X, Bai Z, He Q, Chen H, Yan Y, et al. A microfluidic chip capable of switching W/O droplets to vertical laminar flow for electrochemical detection of droplet contents. Anal Chim Acta. 2014;828:70–9.  https://doi.org/10.1016/j.aca.2014.04.023.CrossRefPubMedGoogle Scholar
  44. 44.
    Bubendorfer AJ, Ingham B, Kennedy JV, Arnold WM. Contamination of PDMS microchannels by lithographic molds. Lab Chip. 2013;13:4312–6.  https://doi.org/10.1039/C3LC50641J.CrossRefPubMedGoogle Scholar
  45. 45.
    Suea-Ngam A, Rattanarat P, Wongravee K, Chailapakul O, Srisa-Art M. Droplet-based glucosamine sensor using gold nanoparticles and polyaniline-modified electrode. Talanta. 2016;158:134–41.  https://doi.org/10.1016/j.talanta.2016.05.052.CrossRefPubMedGoogle Scholar
  46. 46.
    Suea-Ngam A, Rattanarat P, Chailapakul O, Srisa-Art M. Electrochemical droplet-based microfluidics using chip-based carbon paste electrodes for high-throughput analysis in pharmaceutical applications. Anal Chim Acta. 2015;883:45–54.  https://doi.org/10.1016/j.aca.2015.03.008.CrossRefPubMedGoogle Scholar
  47. 47.
    Itoh D, Sassa F, Nishi T, Kani Y, Murata M, Suzuki H. Droplet-based microfluidic sensing system for rapid fish freshness determination. Sens Actuators B Chem. 2012;171–172:619–26.  https://doi.org/10.1016/j.snb.2012.05.043.CrossRefGoogle Scholar
  48. 48.
    Ruecha N, Lee J, Chae H, Cheong H, Soum V, Preechakasedkit P, et al. Paper-based digital microfluidic chip for multiple electrochemical assay operated by a wireless portable control system. Adv Mater Technol. 2017;2:1–8.  https://doi.org/10.1002/admt.201600267.CrossRefGoogle Scholar
  49. 49.
    Wu Y, Xue P, Hui KM, Kang Y. A paper-based microfluidic electrochemical immunodevice integrated with amplification-by-polymerization for the ultrasensitive multiplexed detection of cancer biomarkers. Biosens Bioelectron. 2014;52:180–7.  https://doi.org/10.1016/j.bios.2013.08.039.CrossRefPubMedGoogle Scholar
  50. 50.
    Carvalhal RF, Simão Kfouri M, de Oliveira Piazetta MH, Gobbi AL, Kubota LT. Electrochemical detection in a paper-based separation device. Anal Chem. 2010;82:1162–5.  https://doi.org/10.1021/ac902647r.CrossRefPubMedGoogle Scholar
  51. 51.
    Santhiago M, Kubota LT. A new approach for paper-based analytical devices with electrochemical detection based on graphite pencil electrodes. Sens Actuators B Chem. 2013;177:224–30.  https://doi.org/10.1016/j.snb.2012.11.002.CrossRefGoogle Scholar
  52. 52.
    Cate DM, Adkins JA, Mettakoonpitak J, Henry CS. Recent developments in paper-based microfluidic devices. Anal Chem. 2015;87:19–41.  https://doi.org/10.1021/ac503968p.CrossRefPubMedGoogle Scholar
  53. 53.
    Nie Z, Deiss F, Liu X, Akbulut O, Whitesides GM. Integration of paper-based microfluidic devices with commercial electrochemical readers. Lab Chip. 2010;10:3163–9.  https://doi.org/10.1039/c0lc00237b.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Noiphung J, Songjaroen T, Dungchai W, Henry CS, Chailapakul O, Laiwattanapaisal W. Electrochemical detection of glucose from whole blood using paper-based microfluidic devices. Anal Chim Acta. 2013;788:39–45.  https://doi.org/10.1016/j.aca.2013.06.021.CrossRefPubMedGoogle Scholar
  55. 55.
    Dungchai W, Chailapakul O, Henry CS. Electrochemical detection for paper-based microfluidics. Anal Chem. 2009;81:5821–6.  https://doi.org/10.1021/ac9007573.CrossRefPubMedGoogle Scholar
  56. 56.
    Delaney JL, Hogan CF, Tian J, Shen W. Electrogenerated chemiluminescence detection in paper-based microfluidic sensors. Anal Chem. 2011;83:1300–6.  https://doi.org/10.1021/ac102392t.CrossRefPubMedGoogle Scholar
  57. 57.
    Wang Y, Luo J, Liu J, Li X, Kong Z, Jin H, et al. Electrochemical integrated paper-based immunosensor modified with multi-walled carbon nanotubes nanocomposites for point-of-care testing of 17β-estradiol. Biosens Bioelectron. 2018;107:47–53.  https://doi.org/10.1016/j.bios.2018.02.012.CrossRefPubMedGoogle Scholar
  58. 58.
    Tran VK, Ko E, Geng Y, Kim MK, Jin GH, Son SE, et al. Micro-patterning of single-walled carbon nanotubes and its surface modification with gold nanoparticles for electrochemical paper-based non-enzymatic glucose sensor. J Electroanal Chem. 2018;826:29–37.  https://doi.org/10.1016/j.jelechem.2018.08.013.CrossRefGoogle Scholar
  59. 59.
    Ruecha N, Shin K, Chailapakul O, Rodthongkum N. Label-free paper-based electrochemical impedance immunosensor for human interferon gamma detection. Sens Actuators B Chem. 2019;279:298–304.  https://doi.org/10.1016/j.snb.2018.10.024.CrossRefGoogle Scholar
  60. 60.
    Cao L, Fang C, Zeng R, Zhao X, Zhao F, Jiang Y, et al. A disposable paper-based microfluidic immunosensor based on reduced graphene oxide-tetraethylene pentamine/Au nanocomposite decorated carbon screen-printed electrodes. Sens Actuators B Chem. 2017;252:44–54.  https://doi.org/10.1016/j.snb.2017.05.148.CrossRefGoogle Scholar
  61. 61.
    Zhao C, Thuo MM, Liu X. Erratum: A microfluidic paper-based electrochemical biosensor array for multiplexed detection of metabolic biomarkers (Science and Technology of Advanced Materials (2013) 14 (054402)). Sci Technol Adv Mater. 2013;2015:16.  https://doi.org/10.1088/1468-6996/16/4/049501.CrossRefGoogle Scholar
  62. 62.
    Liu H, Xiang Y, Lu Y, Crooks RM. Aptamer-based origami paper analytical device for electrochemical detection of adenosine. Angew Chem Int Ed. 2012;51:6925–8.  https://doi.org/10.1002/anie.201202929.CrossRefGoogle Scholar
  63. 63.
    Nie Z, Nijhuis CA, Gong J, Chen X, Kumachev A, Martinez AW, et al. Electrochemical sensing in paper-based microfluidic devices. Lab Chip. 2010;10:477–83.  https://doi.org/10.1039/b917150a.CrossRefPubMedGoogle Scholar
  64. 64.
    Malic L, Brassard D, Veres T, Tabrizian M. Integration and detection of biochemical assays in digital microfluidic LOC devices. Lab Chip. 2010;10:418–31.  https://doi.org/10.1039/b917668c.CrossRefPubMedGoogle Scholar
  65. 65.
    Choi K, Ng AHC, Fobel R, Wheeler AR. Digital microfluidics. Annu Rev Anal Chem. 2012;5:413–40.  https://doi.org/10.1146/annurev-anchem-062011-143028.CrossRefGoogle Scholar
  66. 66.
    Sista R, Hua Z, Thwar P, Sudarsan A, Srinivasan V, Eckhardt A, et al. Development of a digital microfluidic platform for point of care testing. Lab Chip. 2008;8:2091–104.  https://doi.org/10.1039/b814922d.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Karuwan C, Sukthang K, Wisitsoraat A, Phokharatkul D, Patthanasettakul V, Wechsatol W, et al. Electrochemical detection on electrowetting-on-dielectric digital microfluidic chip. Talanta. 2011;84:1384–9.  https://doi.org/10.1016/j.talanta.2011.03.073.CrossRefPubMedGoogle Scholar
  68. 68.
    Shamsi MH, Choi K, Ng AHC, Wheeler AR. A digital microfluidic electrochemical immunoassay. Lab Chip. 2014;14:547–54.  https://doi.org/10.1039/c3lc51063h.CrossRefPubMedGoogle Scholar
  69. 69.
    Kwakye S, Goral VN, Baeumner AJ. Electrochemical microfluidic biosensor for nucleic acid detection with integrated minipotentiostat. Biosens Bioelectron. 2006;21:2217–23.  https://doi.org/10.1016/j.bios.2005.11.017.CrossRefPubMedGoogle Scholar
  70. 70.
    Ugsornrat K, Maturos T, Pogfai T, Tuantranont A. Design, fabrication, experimental study, and test electrochemical detector with EWOD for chemical analysis. IFMBE Proc. 2014;43:853–6.  https://doi.org/10.1007/978-3-319-02913-9_220.CrossRefGoogle Scholar
  71. 71.
    Lee GH, Lee JK, Kim JH, Choi HS, Kim J, Lee SH, et al. Single microfluidic electrochemical sensor system for simultaneous multi-pulmonary hypertension biomarker analyses. Sci Rep. 2017;7:1–8.  https://doi.org/10.1038/s41598-017-06144-9.CrossRefGoogle Scholar
  72. 72.
    Tedjo W, Nejad JE, Feeny R, Yang L, Henry CS, Tobet S, et al. Electrochemical biosensor system using a CMOS microelectrode array provides high spatially and temporally resolved images. Biosens Bioelectron. 2018;114:78–88.  https://doi.org/10.1016/j.bios.2018.04.009.CrossRefPubMedGoogle Scholar
  73. 73.
    Ugsornrat K, Maturos T, Pasakon P, Karuwan C, Sriprachuabwong C, Pogfai T, et al. Graphene digital microfluidics microchip. ECTI-CON 2017–2017 14th International conference on electrical engineering/electronics, computer, telecommunications and information technology, 2017, pp 489–92.  https://doi.org/10.1109/ecticon.2017.8096281.
  74. 74.
    Ugsornrat K, Maturos T, Pasakon P, Karuwan C, Pogfai T, Wisitsoraat A, et al. Screen printed electrochemical detector combine with digital microfluidic microchip. 2016 13th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, ECTI-CON 2016, 2016, pp 1–5.  https://doi.org/10.1109/ecticon.2016.7561296.
  75. 75.
    Ezra E, Maor I, Bavli D, Shalom I, Levy G, Prill S, et al. Microprocessor-based integration of microfluidic control for the implementation of automated sensor monitoring and multithreaded optimization algorithms. Biomed Microdev. 2015;17:1–9.  https://doi.org/10.1007/s10544-015-9989-y.CrossRefGoogle Scholar

Copyright information

© The Nonferrous Metals Society of China 2019

Authors and Affiliations

  • Noel Nesakumar
    • 1
  • Srinivasan Kesavan
    • 1
  • Chen-Zhong Li
    • 2
  • Subbiah Alwarappan
    • 1
    Email author
  1. 1.Electrodics and Electrocatalysis DivisionCSIR-Central Electrochemical Research InstituteKaraikudiIndia
  2. 2.Nanobiosensors Laboratory, Department of Biomedical EngineeringFlorida International UniversityMiamiUSA

Personalised recommendations