Optical Nanoimpacts of Dielectric and Metallic Nanoparticles on Gold Surface by Reflectance Microscopy: Adsorption or Bouncing?

  • Jean-François Lemineur
  • Talia Jane Stockmann
  • Jérôme Médard
  • Claire Smadja
  • Catherine Combellas
  • Frédéric KanoufiEmail author
Original Paper


Optical modeling coupled to experiments show that a microscope operating in reflection mode allows imaging, through solutions or even a microfluidic cover, various kinds of nanoparticles, NPs, over a (reflecting) sensing surface, here a gold (Au) surface. Optical modeling suggests that this configuration enables the interferometric imaging of single NPs which can be characterized individually from local change in the surface reflectivity. The interferometric detection improves the optical limit of detection compared to classical configurations exploiting only the light scattered by the NPs. The method is then tested experimentally, to monitor in situ and in real time, the collision of single Brownian NPs, or optical nanoimpacts, with an Au-sensing surface. First, mimicking a microfluidic biosensor platform, the capture of 300 nm FeOx maghemite NPs from a convective flow by a surface-functionalized Au surface is dynamically monitored. Then, the adsorption or bouncing of individual dielectric (100 nm polystyrene) or metallic (40 and 60 nm silver) NPs is observed directly through the solution. The influence of the electrolyte on the ability of NPs to repetitively bounce or irreversibly adsorb onto the Au surface is evidenced. Exploiting such visualization mode of single-NP optical nanoimpacts is insightful for comprehending single-NP electrochemical studies relying on NP collision on an electrode (electrochemical nanoimpacts).


Reflection microscopy Single nanoparticle Sensor Adsorption Silver Polystyrene 



We are grateful for financial support by the Agence Nationale pour la Recherche (NEOCASTIP ANR-15-CE09-0015-02 project) and Direction Générale de l’Armement (AMMIB ANR-13-ASTR-0021-01), by Universities Paris Diderot and Paris Sud and by CNRS.


  1. 1.
    Bard AJ, Mirkin MV, editors. Scanning electrochemical microscopy. 2nd ed. Boca Raton: CRC Press; 2012.Google Scholar
  2. 2.
    Bentley CL, Kang M, Unwin PR. Scanning electrochemical cell microscopy: new perspectives on electrode processes in action. Curr Opin Electrochem. 2017;6:23–30.CrossRefGoogle Scholar
  3. 3.
    Shan XN, Patel U, Wang SP, Iglesias R, Tao NJ. Imaging local electrochemical current via surface plasmon resonance. Science. 2010;327:1363–6.CrossRefGoogle Scholar
  4. 4.
    Shan XN, Diez-Perez I, Wang LJ, Wiktor P, Gu Y, Zhang LH, Wang W, Lu J, Wang SP, Gong QH, Li JH, Tao NJ. Imaging the electrocatalytic activity of single nanoparticles. Nat Nanotech. 2012;7:668–72.CrossRefGoogle Scholar
  5. 5.
    Fang YM, Wang W, Wo X, Luo YS, Yin SW, Wang YX, Shan XN, Tao NJ. Plasmonic imaging of electrochemical oxidation of single nanoparticles. J Am Chem Soc. 2014;136:12584–7.CrossRefGoogle Scholar
  6. 6.
    Yuan T, Wang W. Studying the electrochemistry of single nanoparticles with surface plasmon resonance microscopy. Curr Opin Electrochem. 2017;1:17–22.CrossRefGoogle Scholar
  7. 7.
    Nizamov S, Kasian O, Mirsky VM. Individual detection and electrochemically assisted identification of adsorbed nanoparticles by using surface plasmon microscopy. Angew Chem Int Ed. 2016;55:7247–51.CrossRefGoogle Scholar
  8. 8.
    Nizamov S, Scherbahn V, Mirsky VM. Detection and quantification of single engineered nanoparticles in complex samples using template matching in wide-field surface plasmon microscopy. Anal Chem. 2016;88:10206–14.CrossRefGoogle Scholar
  9. 9.
    Peng Y, Xiong B, Peng L, Li H, He Y, Yeung ES. Recent advances in optical imaging with anisotropic plasmonic nanoparticles. Anal Chem. 2015;87:200–15.CrossRefGoogle Scholar
  10. 10.
    Jing C, Reichert J. Nanoscale electrochemistry in the “dark-field”. Curr Opin Electrochem. 2017;6:10–6.CrossRefGoogle Scholar
  11. 11.
    Brasiliense V, Berto P, Combellas C, Tessier G, Kanoufi F. Electrochemistry of single nanodomains revealed by three-dimensional holographic microscopy. Acc Chem Res. 2016;49:2049–57.CrossRefGoogle Scholar
  12. 12.
    Brasiliense V, Patel AN, Martinez-Marrades A, Shi J, Chen Y, Combellas C, Tessier G, Kanoufi F. Correlated electrochemical and optical detection reveals the chemical reactivity of individual silver nanoparticles. J. Am Chem Soc. 2016;138:3478–83.CrossRefGoogle Scholar
  13. 13.
    Patel AN, Martinez-Marrades A, Brasiliense V, Koshelev D, Besbes M, Kuszelewicz R, Combellas C, Tessier G, Kanoufi F. Deciphering the elementary steps of transport-reaction processes at individual Ag nanoparticles by 3D superlocalization microscopy. Nano Lett. 2015;15:6454–63.CrossRefGoogle Scholar
  14. 14.
    Batchelor-McAuley C, Martinez-Marrades A, Tschulik K, Patel AN, Combellas C, Kanoufi F, Tessier G, Compton RG. Simultaneous electrochemical and 3D optical imaging of silver nanoparticle oxidation. Chem Phys Lett. 2014;597:20–5.CrossRefGoogle Scholar
  15. 15.
    Munteanu S, Garraud N, Roger JP, Amiot F, Shi J, Chen Y, Combellas C, Kanoufi F. In situ, real time monitoring of surface transformation: ellipsometric microscopy imaging of electrografting at microstructured gold surfaces. Anal Chem. 2013;85:1965–71.CrossRefGoogle Scholar
  16. 16.
    Munteanu S, Roger JP, Fedala Y, Amiot F, Combellas C, Tessier G, Kanoufi F. Mapping fluxes of radicals from the combination of electrochemical activation and optical microscopy. Faraday Discuss. 2013;164:241–58.CrossRefGoogle Scholar
  17. 17.
    Fedala Y, Munteanu S, Kanoufi F, Tessier G, Roger JP, Wu C, Amiot F. Calibration procedures for quantitative multiple wavelengths reflectance microscopy. Rev Sci Instrum. 2016;87:013702.CrossRefGoogle Scholar
  18. 18.
    Chakri S, Patel AN, Frateur I, Kanoufi F, Sutter EM, Mai Tran TT, Tribollet B, Vivier V. Imaging of a thin oxide film formation from the combination of surface reflectivity and electrochemical methods. Anal Chem. 2017;89:5303–10.CrossRefGoogle Scholar
  19. 19.
    van Dijk MA, Lippitz M, Orrit M. Far-field optical microscopy of single metal nanoparticles. Acc Chem Res. 2005;38:594–601.CrossRefGoogle Scholar
  20. 20.
    van Dijk MA, Lippitz M, Stolwijk D, Orrit M. A common-path interferometer for time-resolved and shot-noise-limited detection of single nanoparticles. Opt Express. 2007;15:2273–87.CrossRefGoogle Scholar
  21. 21.
    Lindfors K, Kalkbrenner T, Stoller P, Sandoghdar V. Detection and spectroscopy of gold nanoparticles using supercontinuum white light confocal microscopy. Phys Rev Lett. 2004;93:037401.CrossRefGoogle Scholar
  22. 22.
    Kukura P, Ewers H, Müller C, Renn A, Helenius A, Sandoghdar V. High-speed nanoscopic tracking of the position and orientation of a single virus. Nat. Methods. 2009;6:923–7.CrossRefGoogle Scholar
  23. 23.
    Ortega-Arroyo J, Kukura P. Interferometric scattering microscopy (iSCAT): new frontiers in ultrafast and ultrasensitive optical microscopy. Phys Chem Chem Phys. 2012;14:15625–36.CrossRefGoogle Scholar
  24. 24.
    Sevenler D, Avci O, Ünlü MS. Quantitative interferometric reflectance imaging for the detection and measurement of biological nanoparticles. Biomed Opt Express. 2017;8:2976–89.CrossRefGoogle Scholar
  25. 25.
    Avci O, Adato R, Ozkumur AY, Ünlü MS. Physical modeling of interference enhanced imaging and characterization of single nanoparticles. Opt Express. 2016;24:6094–114.CrossRefGoogle Scholar
  26. 26.
    Avci O, Ünlü NL, Ozkumur AY, Ünlü MS. Interferometric reflectance imaging sensor (iris) - a platform technology for multiplexed diagnostics and digital detection. Sensors. 2015;15:17649–65.CrossRefGoogle Scholar
  27. 27.
    Boccara M, Fedala Y, Bryan CV, Bailly-Bechet M, Bowler C, Boccara C. Full-field interferometry for counting and differentiating aquatic biotic nanoparticles: from laboratory to Tara Oceans. Biomed. Opt Express. 2016;7:3736–46.CrossRefGoogle Scholar
  28. 28.
    Lemineur J-F, Noël J-M, Ausserré D, Combellas C, Kanoufi F. Combining electrodeposition and optical microscopy for probing size-dependent single-nanoparticle electrochemistry. Angew Chem Int Ed. 2018;57:11998–2002.CrossRefGoogle Scholar
  29. 29.
    Lemineur J-F, Noël J-M, Combellas C, Ausserré D, Kanoufi F. The promise of antireflective gold electrodes for optically monitoring the electrodeposition of single silver nanoparticles. Faraday Discuss. 2018;210:381–95.CrossRefGoogle Scholar
  30. 30.
    Stockmann TJ, Lemineur J-F, Liu H, Cometto C, Robert M, Combellas C, Kanoufi F. Single LiBH4 nanocrystal stochastic impacts at a micro water vertical bar ionic liquid interface. Electrochim Acta. 2019;299:222–30.CrossRefGoogle Scholar
  31. 31.
    Squires TM, Messinger RJ, Manalis SR. Making it stick: convection, reaction and diffusion in surface-based biosensors. Nat Biotech. 2008;26:417–26.CrossRefGoogle Scholar
  32. 32.
    Xiao X, Bard AJ. Observing single nanoparticle collisions at an ultramicroelectrode by electrocatalytic amplification. J. Am Chem Soc. 2007;129:9610–2.CrossRefGoogle Scholar
  33. 33.
    Zhou YG, Rees NV, Compton RG. The electrochemical detection and characterization of silver nanoparticles in aqueous solution. Angew Chem Int Ed. 2011;50:4219–21.CrossRefGoogle Scholar
  34. 34.
    Sokolov SV, Eloul S, Kätelhön E, Batchelor-McAuley C, Compton RG. Electrode-particle impacts: a users guide. Phys Chem Chem Phys. 2017;19:28–43.CrossRefGoogle Scholar
  35. 35.
    Garcia de Abajo FJ, Howie A. Retarded field calculation of electron energy loss in inhomogeneous dielectrics. Phys Rev B. 2002;65:115418.CrossRefGoogle Scholar
  36. 36.
    Hohenester U, Trügler A. MNPBEM – A Matlab toolbox for the simulation of plasmonic nanoparticles. Comput Phys Commun. 2012;183:370–81.CrossRefGoogle Scholar
  37. 37.
    Waxenegger J, Hohenester U, Trügler A. Plasmonics simulations with the MNPBEM toolbox: consideration of substrates and layer structures. Comput Phys Commun. 2015;193:138–50.CrossRefGoogle Scholar
  38. 38.
    MNPBEM toolbox. 2018. Accessed 20 Dec 2018.
  39. 39.
    Codes developed for the SP-IRIS. 2018. Accessed 20 Dec 2018.
  40. 40.
    Refractive index values are tabulated. 2018. Accessed 20 Dec 2018.
  41. 41.
    Brasiliense V, Berto P, Aubertin P, Maisonhaute E, Combellas C, Tessier G, Courty A, Kanoufi F. Light driven design of dynamical thermosensitive plasmonic superstructures: a bottom-up approach using silver supercrystals. ACS Nano. 2018;12:10833–42.CrossRefGoogle Scholar
  42. 42.
    Wang W, Tao NJ. Detection, counting, and imaging of single nanoparticles. Anal Chem. 2014;86:2–14.CrossRefGoogle Scholar
  43. 43.
    Wo X, Li Z, Jiang Y, Li M, Su Y-W, Wang W, Tao NJ. Determining the absolute concentration of nanoparticles without calibration factor by visualizing the dynamic processes of interfacial adsorption. Anal Chem. 2016;88:2380–5.CrossRefGoogle Scholar
  44. 44.
    Kuzmichev A, Skolnik J, Zybin A, Hergenröder R. Absolute analysis of nanoparticle suspension with surface plasmon microscopy. Anal Chem. 2018;90:10732–7.CrossRefGoogle Scholar
  45. 45.
    Newman J. The fundamental principles of current distribution and mass transport in electrochemical cells. In: Bard AJ, editor. Electroanalytical chemistry, vol. 6. New York: Dekker; 1973. p. 279–97.Google Scholar
  46. 46.
    Fuchs A, Fermigier M, Combellas C, Kanoufi F. Scanning electrochemical microscopy. Hydrodynamics generated by the motion of a scanning tip and its consequences on the tip current. Anal Chem. 2005;77:7966–75.CrossRefGoogle Scholar
  47. 47.
    Quinn BM, van’t Ho PG, Lemay SG. Time-resolved electrochemical detection of discrete adsorption events. J Am Chem Soc. 2004;126:8360–1.CrossRefGoogle Scholar
  48. 48.
    Boika A, Thorgaard SN, Bard AJ. Monitoring the electrophoretic migration and adsorption of single insulating nanoparticles at ultramicroelectrodes. J Phys Chem B. 2013;117:4371–80.CrossRefGoogle Scholar
  49. 49.
    Suraniti E, Kanoufi F, Gosse C, Zhao X, Dimova R, Pouligny B, Sojic N. Electrochemical detection of single microbeads manipulated by optical tweezers in the vicinity of ultramicroelectrodes. Anal Chem. 2013;85:8902–9.CrossRefGoogle Scholar
  50. 50.
    Fosdick SE, Anderson MJ, Nettleton EG, Crooks RM. Correlated electrochemical and optical tracking of discrete collision events. J Am Chem Soc. 2013;135:5994–7.CrossRefGoogle Scholar
  51. 51.
    Oja SM, Robinson DA, Vitti NJ, Edwards MA, Liu Y, White HS, Zhang B. Observation of multipeak collision behavior during the electro-oxidation of single Ag nanoparticles. J Am Chem Soc. 2017;139:708–18.CrossRefGoogle Scholar
  52. 52.
    Ma W, Ma H, Chen JF, Peng Y-Y, Yang Z-Y, Wang H-F, Ying Y-L, Tian H, Long Y-T. Tracking motion trajectories of individual nanoparticles using time-resolved current traces. Chem Sci. 2017;8:1854–61.CrossRefGoogle Scholar
  53. 53.
    Ustarroz J, Kang M, Bullions E, Unwin PR. Impact and oxidation of single silver nanoparticles at electrode surfaces: one shot versus multiple events. Chem Sci. 2017;8:1841–53.CrossRefGoogle Scholar
  54. 54.
    Robinson DA, Liu Y, Edwards MA, Vitti NJ, Oja SM, Zhang B, White HS. Collision dynamics during the electrooxidation of individual silver nanoparticles. J Am Chem Soc. 2017;139:16923–31.CrossRefGoogle Scholar
  55. 55.
    Sun L, Fang Y, Li Z, Wang W, Chen H-Y. Simultaneous optical and electrochemical recording of single nanoparticle electrochemistry. Nano Res. 2017;10:1740–8.CrossRefGoogle Scholar
  56. 56.
    Sun L, Wang W, Chen H-Y. Dynamic nanoparticle-substrate contacts regulate multi-peak behavior of single silver nanoparticle collisions. ChemElectroChem. 2018;5:2995–9.CrossRefGoogle Scholar
  57. 57.
    Hao R, Fan Y, Zhang B. Imaging dynamic collision and oxidation of single silver nanoparticles at the electrode/solution interface. J Am Chem Soc. 2017;139:12274–82.CrossRefGoogle Scholar
  58. 58.
    Robinson DA, Kondajji AM, Castañeda AD, Dasari R, Crooks RM, Stevenson KJ. Addressing colloidal stability for unambiguous electroanalysis of single nanoparticle impacts. J Phys Chem Lett. 2016;7:2512–7.CrossRefGoogle Scholar
  59. 59.
    Sokolov SV, Tschulik K, Batchelor-McAuley C, Jurkschat K, Compton RG. Reversible or not? Distinguishing agglomeration and aggregation at the nanoscale. Anal Chem. 2015;87:10033–9.CrossRefGoogle Scholar
  60. 60.
    Sundaresan V, Monaghan JW, Willets KA. Visualizing the effect of partial oxide formation on single silver nanoparticle electrodissolution. J Phys Chem C. 2018;122:3138–45.CrossRefGoogle Scholar
  61. 61.
    Smith JG, Jain PK. The ligand shell as an energy barrier in surface reactions on transition metal nanoparticles. J Am Chem Soc. 2016;138:6765–73.CrossRefGoogle Scholar
  62. 62.
    Eloul S, Compton RG. Shielding of a microdisc electrode surrounded by an adsorbing surface. ChemElectroChem. 2014;1:917–24.CrossRefGoogle Scholar
  63. 63.
    Di N, Damian A, Maroun F, Allongue P. Influence of potential on the electrodeposition of co on Au(111) by in situ stm and reflectivity measurements. J Electrochem Soc. 2016;163:D3062–8.CrossRefGoogle Scholar

Copyright information

© The Nonferrous Metals Society of China 2019

Authors and Affiliations

  1. 1.Université Sorbonne Paris Cité, Université Paris Diderot, ITODYS, CNRS UMR 7086ParisFrance
  2. 2.Memorial University of NewfoundlandChemistry DepartmentSt. John’sCanada
  3. 3.Faculty of PharmacyUniversity Paris-Sud, CNRS UMR 8612Châtenay-MalabryFrance

Personalised recommendations