Advertisement

Blue Electrogenerated Chemiluminescence from Halide Perovskite Nanocrystals

  • Yiliyasi Wusimanjiang
  • Jeetika Yadav
  • Victoria Arau
  • April E. Steen
  • Nathan I. Hammer
  • Shanlin PanEmail author
Original Paper
  • 23 Downloads

Abstract

Electrogenerated chemiluminescence (ECL) has been extensively used in ultrasensitive electroanalysis because it can be generated electrochemically without using expensive optics and light sources. Visible ECL emission can be obtained with a reasonable quantum yield and stability. Blue ECL is rare and often suffers from stability and poor quantum efficiency. Blue ECL emission at 473 nm from organometallic halide perovskite nanocrystals (PNCs), CH3NH3PbCl1.08Br1.92, is reported here for the first time using tripropylamine (TPrA) as co-reactant. The blue ECL emission peak resembles its photoluminescence peak position. In addition to this blue emission peak, the ECL spectra of CH3NH3PbCl1.08Br1.92 PNCs also showed a broad ECL peak at 745 nm. Generation of the second ECL peak at 745 nm from CH3NH3PbCl1.08Br1.92 PNCs was can be explained by the existence of surface trap states on as-synthesized PNC due to incomplete surface passivation. Halide anion tunability of ECL emission from CH3NH3PbX3 (X: Cl, Br, I) PNCs is also demonstrated. The fluorescence microscopy image of single PNC and stability of selected single PNCs are presented in this with simultaneous acquisition of fluorescence spectra using 405-nm laser excitation. The photoluminescence (PL) decay was described by PL lifetime (τ) of 1.2 ns. The effect of the addition of surfactants (oleic acid and n-octylamine) on the fluorescence intensity and stability of CH3NH3PbCl1.08Br1.92 PNCs is also discussed.

Keywords

ECL (electrogenerated chemiluminescence) Photoluminescence (PL) Perovskite nanocrystals (PNCs) Blue light emission Photoluminescence quantum yield (PLQY) Surfactants 

Notes

Acknowledgements

We would like to thank the financial support from the National Science Foundation (NSF award CHE 1508192 and OIA-1539035). We also thank Central Analytical Facility at The University of Alabama for providing TEM instrument for this study. The technical support from Mr. Johnny Goodwin during TEM analysis of PNCs is greatly appreciated.

References

  1. 1.
    Bella F, Griffini G, Correa-Baena J-P, Saracco G, Grätzel M, Hagfeldt A, et al. Improving efficiency and stability of perovskite solar cells with photocurable fluoropolymers. Science. 2016;354(6309):203–6.  https://doi.org/10.1126/science.aah4046.CrossRefPubMedGoogle Scholar
  2. 2.
    Tsai H, Nie W, Blancon J-C, Stoumpos CC, Asadpour R, Harutyunyan B, et al. High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells. Nature. 2016;536(7616):312.CrossRefGoogle Scholar
  3. 3.
    Stranks SD, Snaith HJ. Metal-halide perovskites for photovoltaic and light-emitting devices. Nat Nanotechnol. 2015;10(5):391.CrossRefGoogle Scholar
  4. 4.
    Kojima A, Teshima K, Shirai Y, Miyasaka T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc. 2009;131(17):6050–1.CrossRefGoogle Scholar
  5. 5.
    Tan Z-K, Moghaddam RS, Lai ML, Docampo P, Higler R, Deschler F, et al. Bright light-emitting diodes based on organometal halide perovskite. Nat Nanotechnol. 2014;9(9):687–92.CrossRefGoogle Scholar
  6. 6.
    Kim YH, Cho H, Heo JH, Kim TS, Myoung N, Lee CL, et al. Multicolored organic/inorganic hybrid perovskite light-emitting diodes. Adv Mater. 2015;27(7):1248–54.CrossRefGoogle Scholar
  7. 7.
    Zhang Q, Ha ST, Liu X, Sum TC, Xiong Q. Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers. Nano Lett. 2014;14(10):5995–6001.CrossRefGoogle Scholar
  8. 8.
    Sutherland BR, Hoogland S, Adachi MM, Wong CT, Sargent EH. Conformal organohalide perovskites enable lasing on spherical resonators. ACS Nano. 2014;8(10):10947–52.CrossRefGoogle Scholar
  9. 9.
    Huang H, Susha AS, Kershaw SV, Hung TF, Rogach AL. Control of emission color of high quantum yield CH3NH3PbBr 3 perovskite quantum dots by precipitation temperature. Adv Sci. 2015;2(9):1500194.CrossRefGoogle Scholar
  10. 10.
    Xing G, Mathews N, Lim SS, Yantara N, Liu X, Sabba D, et al. Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat Mater. 2014;13(5):476.CrossRefGoogle Scholar
  11. 11.
    Dohner ER, Jaffe A, Bradshaw LR, Karunadasa HI. Intrinsic white-light emission from layered hybrid perovskites. J Am Chem Soc. 2014;136(38):13154–7.CrossRefGoogle Scholar
  12. 12.
    Era M, Morimoto S, Tsutsui T, Saito S. Organic-inorganic heterostructure electroluminescent device using a layered perovskite semiconductor (C6H5C2H4NH3)2PbI4. Appl Phys Lett. 1994;65(6):676–8.CrossRefGoogle Scholar
  13. 13.
    Miao W. Electrogenerated chemiluminescence and its biorelated applications. Chem Rev. 2008;108(7):2506–53.CrossRefGoogle Scholar
  14. 14.
    Zou G, Tan X, Long X, He Y, Miao W. Spectrum-resolved dual-colorelectrochemiluminescence immunoassay for simultaneous detection of two targets with nanocrystals as tags. Anal Chem. 2017;89(23):13024–9.CrossRefGoogle Scholar
  15. 15.
    Wusimanjiang Y, Meyer A, Lu L, Miao W. Effects of multi-walled carbon nanotubes on the electrogenerated chemiluminescence and fluorescence of CdTe quantum dots. Anal Bioanal Chem. 2016;408(25):7049–57.CrossRefGoogle Scholar
  16. 16.
    Ding Z, Quinn BM, Haram SK, Pell LE, Korgel BA, Bard AJ. Electrochemistry and electrogenerated chemiluminescence from silicon nanocrystal quantum dots. Science. 2002;296(5571):1293–7.CrossRefGoogle Scholar
  17. 17.
    Myung N, Ding Z, Bard AJ. Electrogenerated chemiluminescence of CdSe nanocrystals. Nano Lett. 2002;2(11):1315–9.CrossRefGoogle Scholar
  18. 18.
    Myung N, Bae Y, Bard AJ. Effect of surface passivation on the electrogenerated chemiluminescence of CdSe/ZnSe nanocrystals. Nano Lett. 2003;3(8):1053–5.CrossRefGoogle Scholar
  19. 19.
    Zhou H, Liu J, Zhang S. Quantum dot-based photoelectric conversion for biosensing applications. Trends Anal Chem. 2015;67:56–73.CrossRefGoogle Scholar
  20. 20.
    Muzyka K. Current trends in the development of the electrochemiluminescent immunosensors. Biosens Bioelectron. 2014;54:393–407.CrossRefGoogle Scholar
  21. 21.
    Huang Y, Fang M, Zou G, Zhang B, Wang H. Monochromatic and electrochemically switchable electrochemiluminescence of perovskite CsPbBr 3 nanocrystals. Nanoscale. 2016;8(44):18734–9.CrossRefGoogle Scholar
  22. 22.
    Tan X, Zhang B, Zou G. Electrochemistry and electrochemiluminescence of organometal halide perovskite nanocrystals in aqueous medium. J Am Chem Soc. 2017;139(25):8772–6.CrossRefGoogle Scholar
  23. 23.
    Huang Y, Long X, Shen D, Zou G, Zhang B, Wang H. Hydrogen peroxide involved anodic charge transfer and electrochemiluminescence of all-inorganic halide perovskite CsPbBr 3 nanocrystals in an aqueous medium. Inorg Chem. 2017;56(17):10135–8.CrossRefGoogle Scholar
  24. 24.
    Cai Z, Li F, Xu W, Xia S, Zeng J, He S, et al. Colloidal CsPbBr 3 perovskite nanocrystal films as electrochemiluminescence emitters in aqueous solutions. Nano Res. 2018;11(3):1447–55.CrossRefGoogle Scholar
  25. 25.
    Wu Y, Wang P, Zhu X, Zhang Q, Wang Z, Liu Y, et al. Composite of CH3NH3PbI3 with reduced graphene oxide as a highly efficient and stable visible-light photocatalyst for hydrogen evolution in aqueous HI solution. Adv Mater. 2018;30(7):1704342.CrossRefGoogle Scholar
  26. 26.
    Wang Z, Liu W, Xu C, Ji B, Zheng C, Zhang X. Excellent deep-blue emitting materials based on anthracene derivatives for non-doped organic light-emitting diodes. Opt Mater. 2016;58:260–7.CrossRefGoogle Scholar
  27. 27.
    Zhu M, Yang C. Blue fluorescent emitters: design tactics and applications in organic light-emitting diodes. Chem Soc Rev. 2013;42(12):4963–76.CrossRefGoogle Scholar
  28. 28.
    Yang X, Xu X, Zhou G. Recent advances of the emitters for high performance deep-blue organic light-emitting diodes. J Mater Chem C. 2015;3(5):913–44.CrossRefGoogle Scholar
  29. 29.
    Zhang Z-Y, Wang H-Y, Zhang Y-X, Hao Y-W, Sun C, Zhang Y, et al. The role of trap-assisted recombination in luminescent properties of organometal halide CH3NH3PbBr 3 perovskite films and quantum dots. Sci Rep. 2016;6:27286.CrossRefGoogle Scholar
  30. 30.
    Hines MA, Guyot-Sionnest P. Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. J Phys Chem. 1996;100(2):468–71.CrossRefGoogle Scholar
  31. 31.
    Miao W, Choi J-P, Bard AJ. Electrogenerated chemiluminescence 69: the tris (2,2‘-bipyridine) ruthenium(II),(Ru(bpy)32+)/Tri-n-propylamine (TPrA) system revisited—a new route involving TPrA•+ cation radicals. J Am Chem Soc. 2002;124(48):14478–85.CrossRefGoogle Scholar
  32. 32.
    Li C, Wei J, Sato M, Koike H, Xie Z-Z, Li Y-Q, et al. Halide-substituted electronic properties of organometal halide perovskite films: direct and inverse photoemission studies. ACS Appl Mater Interfaces. 2016;8(18):11526–31.CrossRefGoogle Scholar
  33. 33.
    Noh JH, Im SH, Heo JH, Mandal TN, Seok SI. Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett. 2013;13(4):1764–9.CrossRefGoogle Scholar
  34. 34.
    Zhang F, Zhong H, Chen C, Wu X-G, Hu X, Huang H, et al. Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: potential alternatives for display technology. ACS Nano. 2015;9(4):4533–42.CrossRefGoogle Scholar

Copyright information

© The Nonferrous Metals Society of China 2019

Authors and Affiliations

  1. 1.Department of Chemistry and BiochemistryThe University of AlabamaTuscaloosaUSA
  2. 2.Chemistry and BiochemistryThe University of MississippiOxfordUSA

Personalised recommendations